这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
当前回答
可以计算为:
import math
def sigmoid(x):
return 1 / (1 + math.exp(-x))
或概念性的,更深的,没有任何进口性的:
def sigmoid(x):
return 1 / (1 + 2.718281828 ** -x)
或者你可以对矩阵使用numpy:
import numpy as np #make sure numpy is already installed
def sigmoid(x):
return 1 / (1 + np.exp(-x))
其他回答
使用numpy包允许sigmoid函数解析向量。
为了与Deeplearning相一致,我使用以下代码:
import numpy as np
def sigmoid(x):
s = 1/(1+np.exp(-x))
return s
另一种方式
>>> def sigmoid(x):
... return 1 /(1+(math.e**-x))
...
>>> sigmoid(0.458)
我觉得很多人可能会对自由参数感兴趣来改变sigmoid函数的形状。其次,对于许多应用程序,您需要使用镜像sigmoid函数。第三,你可能想做一个简单的归一化,例如输出值在0和1之间。
Try:
def normalized_sigmoid_fkt(a, b, x):
'''
Returns array of a horizontal mirrored normalized sigmoid function
output between 0 and 1
Function parameters a = center; b = width
'''
s= 1/(1+np.exp(b*(x-a)))
return 1*(s-min(s))/(max(s)-min(s)) # normalize function to 0-1
并绘制和比较:
def draw_function_on_2x2_grid(x):
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
plt.subplots_adjust(wspace=.5)
plt.subplots_adjust(hspace=.5)
ax1.plot(x, normalized_sigmoid_fkt( .5, 18, x))
ax1.set_title('1')
ax2.plot(x, normalized_sigmoid_fkt(0.518, 10.549, x))
ax2.set_title('2')
ax3.plot(x, normalized_sigmoid_fkt( .7, 11, x))
ax3.set_title('3')
ax4.plot(x, normalized_sigmoid_fkt( .2, 14, x))
ax4.set_title('4')
plt.suptitle('Different normalized (sigmoid) function',size=10 )
return fig
最后:
x = np.linspace(0,1,100)
Travel_function = draw_function_on_2x2_grid(x)
import numpy as np
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
result = sigmoid(0.467)
print(result)
上面的代码是python中的逻辑sigmoid函数。 如果已知x = 0.467, s型函数F(x) = 0.385。你可以尝试在上面的代码中替换任何你知道的x值,你会得到一个不同的F(x)值。
另一种方法是变换tanh函数
sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)