这是一个logistic sigmoid函数:

我知道x,现在如何用Python计算F(x) ?

设x = 0.458。

F(x) = ?


当前回答

另一种方法是变换tanh函数

sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)

其他回答

如果把-放在x前面使您感到困惑,您可以简单地声明1 / np.exp(x)。

def sigmoid(x):
     return 1 /(1 + 1 / np.exp(x))

sigmoid(0.458)

另一种方式

>>> def sigmoid(x):
...     return 1 /(1+(math.e**-x))
...
>>> sigmoid(0.458)

logistic s型函数的数值稳定版本。

    def sigmoid(x):
        pos_mask = (x >= 0)
        neg_mask = (x < 0)
        z = np.zeros_like(x,dtype=float)
        z[pos_mask] = np.exp(-x[pos_mask])
        z[neg_mask] = np.exp(x[neg_mask])
        top = np.ones_like(x,dtype=float)
        top[neg_mask] = z[neg_mask]
        return top / (1 + z)
import numpy as np

def sigmoid(x):
    s = 1 / (1 + np.exp(-x))
    return s

result = sigmoid(0.467)
print(result)

上面的代码是python中的逻辑sigmoid函数。 如果已知x = 0.467, s型函数F(x) = 0.385。你可以尝试在上面的代码中替换任何你知道的x值,你会得到一个不同的F(x)值。

另一种方法是变换tanh函数

sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)