这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
当前回答
另一种方法是变换tanh函数
sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)
其他回答
@unwind的回答很好。然而,它不能处理极端负数(抛出OverflowError)。
我的改进:
def sigmoid(x):
try:
res = 1 / (1 + math.exp(-x))
except OverflowError:
res = 0.0
return res
logistic s型函数的数值稳定版本。
def sigmoid(x):
pos_mask = (x >= 0)
neg_mask = (x < 0)
z = np.zeros_like(x,dtype=float)
z[pos_mask] = np.exp(-x[pos_mask])
z[neg_mask] = np.exp(x[neg_mask])
top = np.ones_like(x,dtype=float)
top[neg_mask] = z[neg_mask]
return top / (1 + z)
这应该做到:
import math
def sigmoid(x):
return 1 / (1 + math.exp(-x))
现在你可以通过调用:
>>> sigmoid(0.458)
0.61253961344091512
更新:请注意,上面的操作主要是将给定表达式直接一对一地转换为Python代码。它没有经过测试,也没有被认为是一个数字上可靠的实现。如果你知道你需要一个非常健壮的实现,我相信其他人已经考虑过这个问题了。
如果把-放在x前面使您感到困惑,您可以简单地声明1 / np.exp(x)。
def sigmoid(x):
return 1 /(1 + 1 / np.exp(x))
sigmoid(0.458)
下面是如何以数字稳定的方式实现逻辑sigmoid(如这里所述):
def sigmoid(x):
"Numerically-stable sigmoid function."
if x >= 0:
z = exp(-x)
return 1 / (1 + z)
else:
z = exp(x)
return z / (1 + z)
或许这句话更准确:
import numpy as np
def sigmoid(x):
return np.exp(-np.logaddexp(0, -x))
在内部,它实现了与上面相同的条件,但随后使用log1p。
一般而言,多项logistic乙型为:
def nat_to_exp(q):
max_q = max(0.0, np.max(q))
rebased_q = q - max_q
return np.exp(rebased_q - np.logaddexp(-max_q, np.logaddexp.reduce(rebased_q)))
(然而,logaddexp。Reduce可能更准确。)