这是一个logistic sigmoid函数:

我知道x,现在如何用Python计算F(x) ?

设x = 0.458。

F(x) = ?


当前回答

另一种方法是变换tanh函数

sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)

其他回答

另一种方式

>>> def sigmoid(x):
...     return 1 /(1+(math.e**-x))
...
>>> sigmoid(0.458)

下面是如何以数字稳定的方式实现逻辑sigmoid(如这里所述):

def sigmoid(x):
    "Numerically-stable sigmoid function."
    if x >= 0:
        z = exp(-x)
        return 1 / (1 + z)
    else:
        z = exp(x)
        return z / (1 + z)

或许这句话更准确:

import numpy as np

def sigmoid(x):  
    return np.exp(-np.logaddexp(0, -x))

在内部,它实现了与上面相同的条件,但随后使用log1p。

一般而言,多项logistic乙型为:

def nat_to_exp(q):
    max_q = max(0.0, np.max(q))
    rebased_q = q - max_q
    return np.exp(rebased_q - np.logaddexp(-max_q, np.logaddexp.reduce(rebased_q)))

(然而,logaddexp。Reduce可能更准确。)

Tensorflow还包括一个sigmoid函数: https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/sigmoid

import tensorflow as tf

sess = tf.InteractiveSession()
x = 0.458
y = tf.sigmoid(x)

u = y.eval()
print(u)
# 0.6125396

可以计算为:

import math
def sigmoid(x):
  return 1 / (1 + math.exp(-x))

或概念性的,更深的,没有任何进口性的:

def sigmoid(x):
  return 1 / (1 + 2.718281828 ** -x)

或者你可以对矩阵使用numpy:

import numpy as np #make sure numpy is already installed
def sigmoid(x):
  return 1 / (1 + np.exp(-x))

logistic s型函数的数值稳定版本。

    def sigmoid(x):
        pos_mask = (x >= 0)
        neg_mask = (x < 0)
        z = np.zeros_like(x,dtype=float)
        z[pos_mask] = np.exp(-x[pos_mask])
        z[neg_mask] = np.exp(x[neg_mask])
        top = np.ones_like(x,dtype=float)
        top[neg_mask] = z[neg_mask]
        return top / (1 + z)