这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
当前回答
另一种方法是变换tanh函数
sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)
其他回答
如果把-放在x前面使您感到困惑,您可以简单地声明1 / np.exp(x)。
def sigmoid(x):
return 1 /(1 + 1 / np.exp(x))
sigmoid(0.458)
另一种方式
>>> def sigmoid(x):
... return 1 /(1+(math.e**-x))
...
>>> sigmoid(0.458)
logistic s型函数的数值稳定版本。
def sigmoid(x):
pos_mask = (x >= 0)
neg_mask = (x < 0)
z = np.zeros_like(x,dtype=float)
z[pos_mask] = np.exp(-x[pos_mask])
z[neg_mask] = np.exp(x[neg_mask])
top = np.ones_like(x,dtype=float)
top[neg_mask] = z[neg_mask]
return top / (1 + z)
import numpy as np
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
result = sigmoid(0.467)
print(result)
上面的代码是python中的逻辑sigmoid函数。 如果已知x = 0.467, s型函数F(x) = 0.385。你可以尝试在上面的代码中替换任何你知道的x值,你会得到一个不同的F(x)值。
另一种方法是变换tanh函数
sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)