这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
当前回答
一个班轮…
In[1]: import numpy as np
In[2]: sigmoid=lambda x: 1 / (1 + np.exp(-x))
In[3]: sigmoid(3)
Out[3]: 0.9525741268224334
其他回答
下面是执行相同操作的python函数。
def sigmoid(x) :
return 1.0/(1+np.exp(-x))
我觉得很多人可能会对自由参数感兴趣来改变sigmoid函数的形状。其次,对于许多应用程序,您需要使用镜像sigmoid函数。第三,你可能想做一个简单的归一化,例如输出值在0和1之间。
Try:
def normalized_sigmoid_fkt(a, b, x):
'''
Returns array of a horizontal mirrored normalized sigmoid function
output between 0 and 1
Function parameters a = center; b = width
'''
s= 1/(1+np.exp(b*(x-a)))
return 1*(s-min(s))/(max(s)-min(s)) # normalize function to 0-1
并绘制和比较:
def draw_function_on_2x2_grid(x):
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
plt.subplots_adjust(wspace=.5)
plt.subplots_adjust(hspace=.5)
ax1.plot(x, normalized_sigmoid_fkt( .5, 18, x))
ax1.set_title('1')
ax2.plot(x, normalized_sigmoid_fkt(0.518, 10.549, x))
ax2.set_title('2')
ax3.plot(x, normalized_sigmoid_fkt( .7, 11, x))
ax3.set_title('3')
ax4.plot(x, normalized_sigmoid_fkt( .2, 14, x))
ax4.set_title('4')
plt.suptitle('Different normalized (sigmoid) function',size=10 )
return fig
最后:
x = np.linspace(0,1,100)
Travel_function = draw_function_on_2x2_grid(x)
这应该做到:
import math
def sigmoid(x):
return 1 / (1 + math.exp(-x))
现在你可以通过调用:
>>> sigmoid(0.458)
0.61253961344091512
更新:请注意,上面的操作主要是将给定表达式直接一对一地转换为Python代码。它没有经过测试,也没有被认为是一个数字上可靠的实现。如果你知道你需要一个非常健壮的实现,我相信其他人已经考虑过这个问题了。
如果把-放在x前面使您感到困惑,您可以简单地声明1 / np.exp(x)。
def sigmoid(x):
return 1 /(1 + 1 / np.exp(x))
sigmoid(0.458)
另一种方法是变换tanh函数
sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)