这是一个logistic sigmoid函数:

我知道x,现在如何用Python计算F(x) ?

设x = 0.458。

F(x) = ?


当前回答

一个班轮…

In[1]: import numpy as np

In[2]: sigmoid=lambda x: 1 / (1 + np.exp(-x))

In[3]: sigmoid(3)
Out[3]: 0.9525741268224334

其他回答

如果把-放在x前面使您感到困惑,您可以简单地声明1 / np.exp(x)。

def sigmoid(x):
     return 1 /(1 + 1 / np.exp(x))

sigmoid(0.458)

使用numpy包允许sigmoid函数解析向量。

为了与Deeplearning相一致,我使用以下代码:

import numpy as np
def sigmoid(x):
    s = 1/(1+np.exp(-x))
    return s

我觉得很多人可能会对自由参数感兴趣来改变sigmoid函数的形状。其次,对于许多应用程序,您需要使用镜像sigmoid函数。第三,你可能想做一个简单的归一化,例如输出值在0和1之间。

Try:

def normalized_sigmoid_fkt(a, b, x):
   '''
   Returns array of a horizontal mirrored normalized sigmoid function
   output between 0 and 1
   Function parameters a = center; b = width
   '''
   s= 1/(1+np.exp(b*(x-a)))
   return 1*(s-min(s))/(max(s)-min(s)) # normalize function to 0-1

并绘制和比较:

def draw_function_on_2x2_grid(x): 
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
    plt.subplots_adjust(wspace=.5)
    plt.subplots_adjust(hspace=.5)

    ax1.plot(x, normalized_sigmoid_fkt( .5, 18, x))
    ax1.set_title('1')

    ax2.plot(x, normalized_sigmoid_fkt(0.518, 10.549, x))
    ax2.set_title('2')

    ax3.plot(x, normalized_sigmoid_fkt( .7, 11, x))
    ax3.set_title('3')

    ax4.plot(x, normalized_sigmoid_fkt( .2, 14, x))
    ax4.set_title('4')
    plt.suptitle('Different normalized (sigmoid) function',size=10 )

    return fig

最后:

x = np.linspace(0,1,100)
Travel_function = draw_function_on_2x2_grid(x)

另一种方法是变换tanh函数

sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)
import numpy as np

def sigmoid(x):
    s = 1 / (1 + np.exp(-x))
    return s

result = sigmoid(0.467)
print(result)

上面的代码是python中的逻辑sigmoid函数。 如果已知x = 0.467, s型函数F(x) = 0.385。你可以尝试在上面的代码中替换任何你知道的x值,你会得到一个不同的F(x)值。