并发和并行之间的区别是什么?
当前回答
“并发”是指同时做任何事情。它们可能是不同的东西,也可能是相同的东西。尽管缺乏公认的答案,但这并不是关于“看起来是在同一时间”,而是真的在同一个时间。您需要多个CPU内核,或者在一个主机内使用共享内存,或者在不同主机上使用分布式内存,以运行并发代码。例如,同时并发运行的3个不同任务的流水线:Task-level-2必须等待Task-level-1完成的单元,而Task-level-3必须等待Task-level-2完成的工作单元。另一个例子是1-生产者与1-消费者的并发;或许多生产者和1-消费者;读者和作家;等
“并行”是指同时做相同的事情。它是并发的,但更重要的是,它是在同一时间发生的相同行为,最典型的是在不同的数据上。矩阵代数通常可以并行化,因为您有重复运行的相同操作:例如,可以使用相同的行为(和)在不同的列上同时计算矩阵的列和。在可用的处理器核之间划分(拆分)列是一种常见的策略,这样每个处理器核处理的工作量(列数)就接近相同。另一种拆分工作的方法是一袋一袋的任务,完成工作的员工会回到经理那里,经理会将工作分配出去,并动态地分配更多的工作,直到所有工作都完成。票务算法是另一种。
不仅仅是数字代码可以并行化。文件太频繁可以并行处理。在自然语言处理应用程序中,对于数百万个文档文件中的每一个,您可能需要计算文档中标记的数量。这是并行的,因为您正在计算每个文件的令牌,这是相同的行为。
换句话说,并行是指同时执行相同的行为。并发意味着同时,但不一定是相同的行为。并行是一种特殊类型的并发,在同一时间发生相同的事情。
例如,术语将包括原子指令、关键部分、互斥、旋转等待、信号量、监视器、屏障、消息传递、map reduce、心跳、铃声、票务算法、线程、MPI、OpenMP。
格雷戈里·安德鲁斯(Gregory Andrews)的著作是关于多线程、并行和分布式编程的顶级教科书。
其他回答
我将提供一个与这里的一些流行答案有点冲突的答案。在我看来,并发是一个包含并行性的通用术语。并发适用于不同任务或工作单元在时间上重叠的任何情况。并行性更具体地适用于在同一物理时间评估/执行不同工作单元的情况。并行性存在的原因是加速了可以从多个物理计算资源中受益的软件。适用于并发的另一个主要概念是交互性。当从外部世界可以观察到任务的重叠时,互动性适用。交互性存在的原因是使软件能够响应真实世界的实体,如用户、网络对等体、硬件外围设备等。
并行性和交互性几乎完全独立于并发性。对于一个特定的项目,开发人员可能会关心其中之一,或者两者都不关心。它们往往会被混淆,尤其是因为线程这一令人厌恶的东西给了一个相当方便的原语来实现两者。
关于并行性的更多细节:
并行性存在于非常小的规模(例如处理器中的指令级并行性)、中等规模(例如多核处理器)和大型规模(例如高性能计算集群)。近年来,由于多核处理器的发展,软件开发人员暴露更多线程级并行性的压力越来越大。平行性与依赖性密切相关。依赖性限制了并行性的实现程度;如果一个任务依赖于另一个任务,则两个任务不能并行执行(忽略推测)。
程序员可以使用许多模式和框架来表达并行性:管道、任务池、数据结构上的聚合操作(“并行数组”)。
关于互动性的更多细节:
最基本和最常见的交互方式是使用事件(即事件循环和处理程序/回调)。对于简单的任务,事件是很好的。尝试使用事件执行更复杂的任务会导致堆栈撕裂(也称为回调地狱;也称为控制反转)。当你厌倦了事件时,你可以尝试更奇特的东西,比如生成器、协程(又称Async/Await)或合作线程。
出于对可靠软件的热爱,如果你想要的是交互性,请不要使用线程。
曲线几何非线性
我不喜欢Rob Pike的“并发不是并行;它更好”口号。并发既不比并行好,也不比并行差。并发性包括交互性,不能以更好/更差的方式与并行性进行比较。这就像说“控制流比数据更好”。
平行度:让多个线程执行类似的任务,这些任务在数据和资源方面彼此独立。例如:谷歌爬虫可以产生数千个线程,每个线程可以独立完成任务。
并发性:当您在线程之间共享数据和共享资源时,并发性就会显现出来。在事务系统中,这意味着您必须使用一些技术(如锁、信号量等)同步代码的关键部分。
“并发”是指同时做任何事情。它们可能是不同的东西,也可能是相同的东西。尽管缺乏公认的答案,但这并不是关于“看起来是在同一时间”,而是真的在同一个时间。您需要多个CPU内核,或者在一个主机内使用共享内存,或者在不同主机上使用分布式内存,以运行并发代码。例如,同时并发运行的3个不同任务的流水线:Task-level-2必须等待Task-level-1完成的单元,而Task-level-3必须等待Task-level-2完成的工作单元。另一个例子是1-生产者与1-消费者的并发;或许多生产者和1-消费者;读者和作家;等
“并行”是指同时做相同的事情。它是并发的,但更重要的是,它是在同一时间发生的相同行为,最典型的是在不同的数据上。矩阵代数通常可以并行化,因为您有重复运行的相同操作:例如,可以使用相同的行为(和)在不同的列上同时计算矩阵的列和。在可用的处理器核之间划分(拆分)列是一种常见的策略,这样每个处理器核处理的工作量(列数)就接近相同。另一种拆分工作的方法是一袋一袋的任务,完成工作的员工会回到经理那里,经理会将工作分配出去,并动态地分配更多的工作,直到所有工作都完成。票务算法是另一种。
不仅仅是数字代码可以并行化。文件太频繁可以并行处理。在自然语言处理应用程序中,对于数百万个文档文件中的每一个,您可能需要计算文档中标记的数量。这是并行的,因为您正在计算每个文件的令牌,这是相同的行为。
换句话说,并行是指同时执行相同的行为。并发意味着同时,但不一定是相同的行为。并行是一种特殊类型的并发,在同一时间发生相同的事情。
例如,术语将包括原子指令、关键部分、互斥、旋转等待、信号量、监视器、屏障、消息传递、map reduce、心跳、铃声、票务算法、线程、MPI、OpenMP。
格雷戈里·安德鲁斯(Gregory Andrews)的著作是关于多线程、并行和分布式编程的顶级教科书。
在电子学中,串行和并行表示一种静态拓扑,决定电路的实际行为。当没有并发时,并行性是确定性的。
为了描述动态的、与时间相关的现象,我们使用了术语顺序和并发。例如,可以通过特定的任务序列(例如配方)获得特定的结果。当我们与某人交谈时,我们会产生一系列单词。然而,在现实中,许多其他过程在同一时刻发生,因此,与某一行动的实际结果一致。如果很多人在同一时间谈话,同时进行的谈话可能会干扰我们的顺序,但这种干扰的结果事先不知道。并发性引入了不确定性。
串行/并行和顺序/并行表征是正交的。数字通信就是一个例子。在串行适配器中,数字消息沿同一通信线路(例如,一根电线)临时(即顺序)分布。在并行适配器中,这也在并行通信线路(例如多条电线)上进行划分,然后在接收端进行重构。
让我们想象一个有9个孩子的游戏。如果我们将它们作为一条链处理,在开始时发送消息,在结束时接收消息,我们将进行串行通信。更多的单词组成了一系列的交流单元。
I like ice-cream so much. > X > X > X > X > X > X > X > X > X > ....
这是在串行基础结构上复制的顺序过程。
现在,让我们想象一下,把孩子们分成三组。我们把这个短语分成三部分,第一部分给左边的孩子,第二部分给中心线的孩子,等等。
I like ice-cream so much. > I like > X > X > X > .... > ....
> ice-cream > X > X > X > ....
> so much > X > X > X > ....
这是一个在并行基础结构上复制的顺序过程(尽管仍部分序列化)。
在这两种情况下,假设孩子之间有完美的沟通,结果会提前确定。
如果有其他人与您同时与第一个孩子交谈,那么我们将同时进行处理。我们不知道基础设施将考虑哪个过程,因此最终结果尚未提前确定。
(我很惊讶这样一个根本问题多年来都没有得到正确和巧妙的解决……)
简而言之,并发性和并行性都是计算的财产。
至于区别,以下是罗伯特·哈珀的解释:
首先要理解的是并行性与并发无关。并发与程序(或其组件)的不确定性组成有关。并行性与具有确定性行为的程序的渐近效率有关。并发是关于管理不可管理的事件:事件的发生是出于我们无法控制的原因,我们必须对此做出反应。用户单击鼠标时,窗口管理器必须做出响应,即使显示需要注意。这种情况本质上是不确定性的,但我们也在确定性设置中采用形式上的不确定性,假装组件以任意顺序发出事件信号,并且我们必须在事件发生时对其作出响应。非确定性组合是一种强大的程序结构思想。另一方面,并行性是关于确定性计算的子组之间的依赖性。其结果毋庸置疑,但有许多方法可以实现,有些方法比其他方法更有效。我们希望充分利用这些机会。
它们可以是程序中的各种正交财产。阅读此博客文章以获取更多插图。这篇文章稍微讨论了编程中组件的差异,比如线程。
注意,线程或多任务都是为更具体的目的服务的计算实现。它们可以与并行性和并发性相关,但不是以一种基本的方式。因此,它们很难成为开始解释的好条目。
还有一个亮点:(物理)“时间”几乎与这里讨论的财产无关。时间只是一种衡量实施的方式,以显示财产的重要性,但远非本质。仔细考虑一下“时间”在时间复杂性中的作用——这或多或少是相似的,即使在这种情况下,度量也往往更重要。