并发和并行之间的区别是什么?


当前回答

“并发”是指同时做任何事情。它们可能是不同的东西,也可能是相同的东西。尽管缺乏公认的答案,但这并不是关于“看起来是在同一时间”,而是真的在同一个时间。您需要多个CPU内核,或者在一个主机内使用共享内存,或者在不同主机上使用分布式内存,以运行并发代码。例如,同时并发运行的3个不同任务的流水线:Task-level-2必须等待Task-level-1完成的单元,而Task-level-3必须等待Task-level-2完成的工作单元。另一个例子是1-生产者与1-消费者的并发;或许多生产者和1-消费者;读者和作家;等

“并行”是指同时做相同的事情。它是并发的,但更重要的是,它是在同一时间发生的相同行为,最典型的是在不同的数据上。矩阵代数通常可以并行化,因为您有重复运行的相同操作:例如,可以使用相同的行为(和)在不同的列上同时计算矩阵的列和。在可用的处理器核之间划分(拆分)列是一种常见的策略,这样每个处理器核处理的工作量(列数)就接近相同。另一种拆分工作的方法是一袋一袋的任务,完成工作的员工会回到经理那里,经理会将工作分配出去,并动态地分配更多的工作,直到所有工作都完成。票务算法是另一种。

不仅仅是数字代码可以并行化。文件太频繁可以并行处理。在自然语言处理应用程序中,对于数百万个文档文件中的每一个,您可能需要计算文档中标记的数量。这是并行的,因为您正在计算每个文件的令牌,这是相同的行为。

换句话说,并行是指同时执行相同的行为。并发意味着同时,但不一定是相同的行为。并行是一种特殊类型的并发,在同一时间发生相同的事情。

例如,术语将包括原子指令、关键部分、互斥、旋转等待、信号量、监视器、屏障、消息传递、map reduce、心跳、铃声、票务算法、线程、MPI、OpenMP。

格雷戈里·安德鲁斯(Gregory Andrews)的著作是关于多线程、并行和分布式编程的顶级教科书。

其他回答

同意:具有共享资源潜力的多个执行流

前任:两个线程竞争I/O端口。

视差:将问题分成多个相似的块。

前任:通过对文件的每一半运行两个进程来解析大文件。

平行度:让多个线程执行类似的任务,这些任务在数据和资源方面彼此独立。例如:谷歌爬虫可以产生数千个线程,每个线程可以独立完成任务。

并发性:当您在线程之间共享数据和共享资源时,并发性就会显现出来。在事务系统中,这意味着您必须使用一些技术(如锁、信号量等)同步代码的关键部分。

简单地说,并发就是同时处理很多事情。

“处理”一词用粗体显示了并发和并行之间的区别。同时处理许多事情意味着同时完成许多事情,但它们是否同时执行并不重要。另一方面,并行意味着同时做很多事情(同时执行)。因此,可以使用一个或多个处理资源来实现并发上下文。使用一个处理资源同时处理许多事情意味着通过在任务之间进行上下文切换,可以同时执行许多事情。另一方面,具有许多处理资源的并发上下文意味着进行并行处理。这意味着我们通过并行来实现并发,但反之亦然。

在我的文章中,您可能想了解更多关于并发性和并行性及其与当今技术的关系。

(我很惊讶这样一个根本问题多年来都没有得到正确和巧妙的解决……)

简而言之,并发性和并行性都是计算的财产。

至于区别,以下是罗伯特·哈珀的解释:

首先要理解的是并行性与并发无关。并发与程序(或其组件)的不确定性组成有关。并行性与具有确定性行为的程序的渐近效率有关。并发是关于管理不可管理的事件:事件的发生是出于我们无法控制的原因,我们必须对此做出反应。用户单击鼠标时,窗口管理器必须做出响应,即使显示需要注意。这种情况本质上是不确定性的,但我们也在确定性设置中采用形式上的不确定性,假装组件以任意顺序发出事件信号,并且我们必须在事件发生时对其作出响应。非确定性组合是一种强大的程序结构思想。另一方面,并行性是关于确定性计算的子组之间的依赖性。其结果毋庸置疑,但有许多方法可以实现,有些方法比其他方法更有效。我们希望充分利用这些机会。

它们可以是程序中的各种正交财产。阅读此博客文章以获取更多插图。这篇文章稍微讨论了编程中组件的差异,比如线程。

注意,线程或多任务都是为更具体的目的服务的计算实现。它们可以与并行性和并发性相关,但不是以一种基本的方式。因此,它们很难成为开始解释的好条目。

还有一个亮点:(物理)“时间”几乎与这里讨论的财产无关。时间只是一种衡量实施的方式,以显示财产的重要性,但远非本质。仔细考虑一下“时间”在时间复杂性中的作用——这或多或少是相似的,即使在这种情况下,度量也往往更重要。

要补充其他人所说的话:

并发性就像让一个玩杂耍的人玩多个球。不管看起来如何,玩杂耍的人每次只手抓/扔一个球。平行运动是让多个杂耍者同时变戏法。