并发和并行之间的区别是什么?


当前回答

平行度:让多个线程执行类似的任务,这些任务在数据和资源方面彼此独立。例如:谷歌爬虫可以产生数千个线程,每个线程可以独立完成任务。

并发性:当您在线程之间共享数据和共享资源时,并发性就会显现出来。在事务系统中,这意味着您必须使用一些技术(如锁、信号量等)同步代码的关键部分。

其他回答

简单示例:

并发是:“两个队列访问一台ATM机”

并行是:“两个队列和两台ATM机”

同意:具有共享资源潜力的多个执行流

前任:两个线程竞争I/O端口。

视差:将问题分成多个相似的块。

前任:通过对文件的每一半运行两个进程来解析大文件。

派克的“并发”概念是一个有意的设计和实现决策。具有并发能力的程序设计可能表现出行为上的“并行性”;这取决于运行时环境。

你不希望一个不是为并发而设计的程序表现出并行性。:-)但就相关因素(功耗、性能等)而言,这是一个净收益,您需要最大程度的并发设计,以便主机系统可以在可能的情况下并行执行。

派克的Go编程语言将这一点发挥到了极致:他的函数都是可以同时正确运行的线程,也就是说,如果系统有能力,调用函数总是会创建一个与调用者并行运行的线程。一个拥有数百甚至数千个线程的应用程序在他的世界中是非常普通的。(我不是围棋专家,这只是我的看法。)

我将尝试用一个有趣且易于理解的示例进行解释。:)

假设一个组织组织了一场国际象棋比赛,10名棋手(棋艺相同)将挑战一名职业冠军棋手。由于国际象棋是一场1:1的比赛,因此组织者必须以高效的方式进行10场比赛,以便尽快完成整个比赛。

希望以下场景能够轻松描述进行这10场比赛的多种方式:

1) 串行-让我们假设专业人员与每个人逐一进行游戏,即与一个人开始和结束游戏,然后与下一个人开始下一场游戏,依此类推。换句话说,他们决定按顺序进行游戏。因此,如果一场比赛需要10分钟才能完成,那么10场比赛将需要100分钟,同样假设从一场比赛到另一场比赛的过渡需要6秒,那么对于10场比赛,则需要54秒(约1分钟)。

因此整个活动将在101分钟内完成(最差进场)

2) 同时-让我们假设职业球员轮到下一个球员,所以所有10名球员同时上场,但职业球员不是一次两个人,他轮到下一个人上场。现在假设一名职业球员需要6秒才能轮到他,而一名职业选手与两名选手的转换时间为6秒,那么回到第一名选手的总转换时间为1分钟(10x6秒)。因此,当他回到第一个与他一起开始比赛的人身边时,已经过去了2分钟(10xtime_per_turn_by-campion+10xtransition_time=2分钟)

假设所有玩家都需要45秒才能完成他们的回合,那么根据SERIAL事件的每场10分钟,游戏结束前的回合数应为600/(45+6)=11回合(约)

因此,整个事件将在11xtime_per_turn_by-player_&_champion+11xtransition_time_across_10_players=11x51+11x60sec=561+660=1221sec=20.35min(大约)内完成

从101分钟提高到20.35分钟(更好的方法)

3) 平行-假设组织者获得了一些额外的资金,因此决定邀请两名职业冠军选手(两人能力相同),并将同一组10名选手(挑战者)分成两组,每组5人,并将他们分配给两名冠军,即每组一人。现在,赛事在这两组比赛中并行进行,即至少有两名选手(每组一名)与各自组的两名职业选手进行比赛。

然而,在该组中,职业选手一次只带一名选手(即按顺序),因此无需任何计算,您可以很容易地推断出整个比赛将在101/2=50.5分钟内完成

看到从101分钟到50.5分钟的进步(好方法)

4) 并发+并行-在上述场景中,假设两名冠军选手将与各自组中的5名选手同时比赛(读第二分),因此现在跨组的比赛是并行运行的,但在组内,他们是同时运行的。

因此,一组游戏将在11xtime_per_turn_by-playerer_&_champion+1extransition_time_across_5_layers=11x51+11x30=600+330=930秒=15.5分钟(大约)内完成

因此,整个活动(包括两个这样的平行跑步组)大约将在15.5分钟内完成

看到从101分钟到15.5分钟的改进(最佳方法)

注意:在上述场景中,如果您用10个类似的工作替换10个玩家,用两个CPU核心替换两个职业玩家,则以下顺序仍然正确:

串行>并行>并发>并发+并行

(注意:此顺序可能会因其他情况而改变,因为此顺序高度依赖于作业之间的相互依赖性、作业之间的通信需求以及作业之间的转换开销)

并发与并行

Rob Pike在《并发不是并行性》中

并发是指同时处理许多事情。

并行是指同时做很多事情。

[并发理论]

并发-一次处理多个任务并行性-一次处理多个线程

我对并发性和并行性的看法

[同步与异步][Swift并发]