并发和并行之间的区别是什么?


当前回答

平行度:让多个线程执行类似的任务,这些任务在数据和资源方面彼此独立。例如:谷歌爬虫可以产生数千个线程,每个线程可以独立完成任务。

并发性:当您在线程之间共享数据和共享资源时,并发性就会显现出来。在事务系统中,这意味着您必须使用一些技术(如锁、信号量等)同步代码的关键部分。

其他回答

同意:具有共享资源潜力的多个执行流

前任:两个线程竞争I/O端口。

视差:将问题分成多个相似的块。

前任:通过对文件的每一半运行两个进程来解析大文件。

我将尝试用一个有趣且易于理解的示例进行解释。:)

假设一个组织组织了一场国际象棋比赛,10名棋手(棋艺相同)将挑战一名职业冠军棋手。由于国际象棋是一场1:1的比赛,因此组织者必须以高效的方式进行10场比赛,以便尽快完成整个比赛。

希望以下场景能够轻松描述进行这10场比赛的多种方式:

1) 串行-让我们假设专业人员与每个人逐一进行游戏,即与一个人开始和结束游戏,然后与下一个人开始下一场游戏,依此类推。换句话说,他们决定按顺序进行游戏。因此,如果一场比赛需要10分钟才能完成,那么10场比赛将需要100分钟,同样假设从一场比赛到另一场比赛的过渡需要6秒,那么对于10场比赛,则需要54秒(约1分钟)。

因此整个活动将在101分钟内完成(最差进场)

2) 同时-让我们假设职业球员轮到下一个球员,所以所有10名球员同时上场,但职业球员不是一次两个人,他轮到下一个人上场。现在假设一名职业球员需要6秒才能轮到他,而一名职业选手与两名选手的转换时间为6秒,那么回到第一名选手的总转换时间为1分钟(10x6秒)。因此,当他回到第一个与他一起开始比赛的人身边时,已经过去了2分钟(10xtime_per_turn_by-campion+10xtransition_time=2分钟)

假设所有玩家都需要45秒才能完成他们的回合,那么根据SERIAL事件的每场10分钟,游戏结束前的回合数应为600/(45+6)=11回合(约)

因此,整个事件将在11xtime_per_turn_by-player_&_champion+11xtransition_time_across_10_players=11x51+11x60sec=561+660=1221sec=20.35min(大约)内完成

从101分钟提高到20.35分钟(更好的方法)

3) 平行-假设组织者获得了一些额外的资金,因此决定邀请两名职业冠军选手(两人能力相同),并将同一组10名选手(挑战者)分成两组,每组5人,并将他们分配给两名冠军,即每组一人。现在,赛事在这两组比赛中并行进行,即至少有两名选手(每组一名)与各自组的两名职业选手进行比赛。

然而,在该组中,职业选手一次只带一名选手(即按顺序),因此无需任何计算,您可以很容易地推断出整个比赛将在101/2=50.5分钟内完成

看到从101分钟到50.5分钟的进步(好方法)

4) 并发+并行-在上述场景中,假设两名冠军选手将与各自组中的5名选手同时比赛(读第二分),因此现在跨组的比赛是并行运行的,但在组内,他们是同时运行的。

因此,一组游戏将在11xtime_per_turn_by-playerer_&_champion+1extransition_time_across_5_layers=11x51+11x30=600+330=930秒=15.5分钟(大约)内完成

因此,整个活动(包括两个这样的平行跑步组)大约将在15.5分钟内完成

看到从101分钟到15.5分钟的改进(最佳方法)

注意:在上述场景中,如果您用10个类似的工作替换10个玩家,用两个CPU核心替换两个职业玩家,则以下顺序仍然正确:

串行>并行>并发>并发+并行

(注意:此顺序可能会因其他情况而改变,因为此顺序高度依赖于作业之间的相互依赖性、作业之间的通信需求以及作业之间的转换开销)

这个来源的解释对我很有帮助:

并发性与应用程序如何处理多个任务有关一个应用程序可以一次处理一个任务(按顺序)或同时处理多个任务(同时)。另一方面,并行性与应用程序处理每个单独的任务。应用程序可以处理该任务从开始到结束依次执行,或将任务拆分为子任务可以并行完成。正如您所看到的,应用程序可以是并发的,但不能是并行的。这意味着它同时处理多个任务,但是这些任务不分解为子任务。应用程序也可以是并行的,但不能是并发的。这意味着应用程序一次只能处理一个任务,而此任务被分解为可以并行处理的子任务。此外,应用程序既不能是并发的,也不能是并行的。这意味着它一次只能处理一个任务从未分解为并行执行的子任务。最后,应用程序也可以是并发和并行的,在它可以同时处理多个任务,也可以中断将每个任务分解为子任务以并行执行。然而并发性和并行性的好处可能会因此而丧失由于计算机中的CPU已经处于相当繁忙的状态仅具有并发性或并行性。结合起来可能会导致只有很小的性能增益或甚至性能损失。

“并发”是指有多件事情正在进行。

“并行性”是指并发的事情同时进行。


没有并行性的并发示例:

单个内核上有多个线程。Win32消息队列中有多条消息。MARS连接上有多个SqlDataReader。浏览器选项卡中有多个JavaScript承诺。

然而,请注意,并发性和并行性之间的区别通常是一个视角问题。从执行代码(可观察到的效果)的角度来看,上述示例是非并行的。但即使在单个内核中也存在指令级并行性。有一些硬件与CPU并行工作,然后在完成时中断CPU。在执行窗口过程或事件处理程序时,GPU可能正在绘制到屏幕。当您仍然获取上一个查询的结果时,DBMS可能正在为下一个查询遍历B树。执行Promise.resolve()时,浏览器可能正在进行布局或联网。等等。。。

好了。世界一如既往地混乱;)

“并发”是指同时做任何事情。它们可能是不同的东西,也可能是相同的东西。尽管缺乏公认的答案,但这并不是关于“看起来是在同一时间”,而是真的在同一个时间。您需要多个CPU内核,或者在一个主机内使用共享内存,或者在不同主机上使用分布式内存,以运行并发代码。例如,同时并发运行的3个不同任务的流水线:Task-level-2必须等待Task-level-1完成的单元,而Task-level-3必须等待Task-level-2完成的工作单元。另一个例子是1-生产者与1-消费者的并发;或许多生产者和1-消费者;读者和作家;等

“并行”是指同时做相同的事情。它是并发的,但更重要的是,它是在同一时间发生的相同行为,最典型的是在不同的数据上。矩阵代数通常可以并行化,因为您有重复运行的相同操作:例如,可以使用相同的行为(和)在不同的列上同时计算矩阵的列和。在可用的处理器核之间划分(拆分)列是一种常见的策略,这样每个处理器核处理的工作量(列数)就接近相同。另一种拆分工作的方法是一袋一袋的任务,完成工作的员工会回到经理那里,经理会将工作分配出去,并动态地分配更多的工作,直到所有工作都完成。票务算法是另一种。

不仅仅是数字代码可以并行化。文件太频繁可以并行处理。在自然语言处理应用程序中,对于数百万个文档文件中的每一个,您可能需要计算文档中标记的数量。这是并行的,因为您正在计算每个文件的令牌,这是相同的行为。

换句话说,并行是指同时执行相同的行为。并发意味着同时,但不一定是相同的行为。并行是一种特殊类型的并发,在同一时间发生相同的事情。

例如,术语将包括原子指令、关键部分、互斥、旋转等待、信号量、监视器、屏障、消息传递、map reduce、心跳、铃声、票务算法、线程、MPI、OpenMP。

格雷戈里·安德鲁斯(Gregory Andrews)的著作是关于多线程、并行和分布式编程的顶级教科书。