并发和并行之间的区别是什么?


当前回答

并发与并行

Rob Pike在《并发不是并行性》中

并发是指同时处理许多事情。

并行是指同时做很多事情。

[并发理论]

并发-一次处理多个任务并行性-一次处理多个线程

我对并发性和并行性的看法

[同步与异步][Swift并发]

其他回答

它们解决不同的问题。并发性解决了CPU资源稀缺和任务多的问题。因此,您可以通过代码创建线程或独立的执行路径,以便在稀缺资源上共享时间。直到最近,由于CPU的可用性,并发性一直是讨论的焦点。

并行性解决了找到足够的任务和适当的任务(可以正确分割的任务)并将它们分配到大量的CPU资源上的问题。当然,并行性一直都存在,但由于多核处理器非常便宜,所以它正走到最前沿。

我将提供一个与这里的一些流行答案有点冲突的答案。在我看来,并发是一个包含并行性的通用术语。并发适用于不同任务或工作单元在时间上重叠的任何情况。并行性更具体地适用于在同一物理时间评估/执行不同工作单元的情况。并行性存在的原因是加速了可以从多个物理计算资源中受益的软件。适用于并发的另一个主要概念是交互性。当从外部世界可以观察到任务的重叠时,互动性适用。交互性存在的原因是使软件能够响应真实世界的实体,如用户、网络对等体、硬件外围设备等。

并行性和交互性几乎完全独立于并发性。对于一个特定的项目,开发人员可能会关心其中之一,或者两者都不关心。它们往往会被混淆,尤其是因为线程这一令人厌恶的东西给了一个相当方便的原语来实现两者。

关于并行性的更多细节:

并行性存在于非常小的规模(例如处理器中的指令级并行性)、中等规模(例如多核处理器)和大型规模(例如高性能计算集群)。近年来,由于多核处理器的发展,软件开发人员暴露更多线程级并行性的压力越来越大。平行性与依赖性密切相关。依赖性限制了并行性的实现程度;如果一个任务依赖于另一个任务,则两个任务不能并行执行(忽略推测)。

程序员可以使用许多模式和框架来表达并行性:管道、任务池、数据结构上的聚合操作(“并行数组”)。

关于互动性的更多细节:

最基本和最常见的交互方式是使用事件(即事件循环和处理程序/回调)。对于简单的任务,事件是很好的。尝试使用事件执行更复杂的任务会导致堆栈撕裂(也称为回调地狱;也称为控制反转)。当你厌倦了事件时,你可以尝试更奇特的东西,比如生成器、协程(又称Async/Await)或合作线程。

出于对可靠软件的热爱,如果你想要的是交互性,请不要使用线程。

曲线几何非线性

我不喜欢Rob Pike的“并发不是并行;它更好”口号。并发既不比并行好,也不比并行差。并发性包括交互性,不能以更好/更差的方式与并行性进行比较。这就像说“控制流比数据更好”。

派克的“并发”概念是一个有意的设计和实现决策。具有并发能力的程序设计可能表现出行为上的“并行性”;这取决于运行时环境。

你不希望一个不是为并发而设计的程序表现出并行性。:-)但就相关因素(功耗、性能等)而言,这是一个净收益,您需要最大程度的并发设计,以便主机系统可以在可能的情况下并行执行。

派克的Go编程语言将这一点发挥到了极致:他的函数都是可以同时正确运行的线程,也就是说,如果系统有能力,调用函数总是会创建一个与调用者并行运行的线程。一个拥有数百甚至数千个线程的应用程序在他的世界中是非常普通的。(我不是围棋专家,这只是我的看法。)

并发与并行

Rob Pike在《并发不是并行性》中

并发是指同时处理许多事情。

并行是指同时做很多事情。

[并发理论]

并发-一次处理多个任务并行性-一次处理多个线程

我对并发性和并行性的看法

[同步与异步][Swift并发]

简单地说,并发就是同时处理很多事情。

“处理”一词用粗体显示了并发和并行之间的区别。同时处理许多事情意味着同时完成许多事情,但它们是否同时执行并不重要。另一方面,并行意味着同时做很多事情(同时执行)。因此,可以使用一个或多个处理资源来实现并发上下文。使用一个处理资源同时处理许多事情意味着通过在任务之间进行上下文切换,可以同时执行许多事情。另一方面,具有许多处理资源的并发上下文意味着进行并行处理。这意味着我们通过并行来实现并发,但反之亦然。

在我的文章中,您可能想了解更多关于并发性和并行性及其与当今技术的关系。