并发和并行之间的区别是什么?
当前回答
简单示例:
并发是:“两个队列访问一台ATM机”
并行是:“两个队列和两台ATM机”
其他回答
“并发”是指同时做任何事情。它们可能是不同的东西,也可能是相同的东西。尽管缺乏公认的答案,但这并不是关于“看起来是在同一时间”,而是真的在同一个时间。您需要多个CPU内核,或者在一个主机内使用共享内存,或者在不同主机上使用分布式内存,以运行并发代码。例如,同时并发运行的3个不同任务的流水线:Task-level-2必须等待Task-level-1完成的单元,而Task-level-3必须等待Task-level-2完成的工作单元。另一个例子是1-生产者与1-消费者的并发;或许多生产者和1-消费者;读者和作家;等
“并行”是指同时做相同的事情。它是并发的,但更重要的是,它是在同一时间发生的相同行为,最典型的是在不同的数据上。矩阵代数通常可以并行化,因为您有重复运行的相同操作:例如,可以使用相同的行为(和)在不同的列上同时计算矩阵的列和。在可用的处理器核之间划分(拆分)列是一种常见的策略,这样每个处理器核处理的工作量(列数)就接近相同。另一种拆分工作的方法是一袋一袋的任务,完成工作的员工会回到经理那里,经理会将工作分配出去,并动态地分配更多的工作,直到所有工作都完成。票务算法是另一种。
不仅仅是数字代码可以并行化。文件太频繁可以并行处理。在自然语言处理应用程序中,对于数百万个文档文件中的每一个,您可能需要计算文档中标记的数量。这是并行的,因为您正在计算每个文件的令牌,这是相同的行为。
换句话说,并行是指同时执行相同的行为。并发意味着同时,但不一定是相同的行为。并行是一种特殊类型的并发,在同一时间发生相同的事情。
例如,术语将包括原子指令、关键部分、互斥、旋转等待、信号量、监视器、屏障、消息传递、map reduce、心跳、铃声、票务算法、线程、MPI、OpenMP。
格雷戈里·安德鲁斯(Gregory Andrews)的著作是关于多线程、并行和分布式编程的顶级教科书。
为什么存在困惑
由于这两个词的字典含义几乎相同,因此存在混淆:
并发:同时存在、发生或完成(dictionary.com)平行:非常相似,经常同时发生(梅里亚姆·韦伯斯特)。
然而,它们在计算机科学和编程中的使用方式却截然不同。以下是我的解释:
并发性:可中断性并行性:独立性
那么,我所说的上述定义是什么意思?
我将用一个现实世界的类比来澄清。假设你必须在一天内完成两项非常重要的任务:
获取护照完成演示文稿
现在,问题是任务1需要你去一个极其官僚的政府办公室,这让你排队等候4个小时才能拿到护照。同时,任务2是你的办公室需要的,这是一项关键任务。两者都必须在特定的一天完成。
案例1:顺序执行
通常,你会开车去护照办公室2个小时,排队4个小时,完成任务,开车回去两个小时,回家,再睡5个小时,然后完成演讲。
案例2:并发执行
但你很聪明。你要提前计划。你随身携带一台笔记本电脑,在排队等候的时候,你开始做你的演讲。这样,一旦你回到家里,你只需要额外工作1小时而不是5小时。
在这种情况下,这两项任务都是由您完成的,只是零碎的。您在排队等候时中断了护照任务,并进行了演示。当您的号码被呼叫时,您中断了演示任务,并切换到护照任务。由于这两项任务的可中断性,节省时间基本上是可能的。
并发性,IMO,可以理解为ACID中的“隔离”属性。如果子事务可以以任何交错的方式执行,那么两个数据库事务被认为是隔离的,并且如果两个任务是顺序完成的,那么最终结果是相同的。记住,对于护照和演示任务,你是唯一的刽子手。
案例3:并行执行
现在,既然你是个聪明的家伙,你显然是个更高级的人,而且你有一个助手。所以,在你开始护照任务之前,你给他打电话,告诉他准备演示文稿的初稿。你花了一整天的时间完成护照任务,回来看看你的邮件,然后找到了演示稿。他做得很扎实,再过两个小时就完成了一些编辑。
现在,你的助手和你一样聪明,他能够独立工作,而不需要经常要求你澄清。因此,由于任务的独立性,它们由两个不同的执行者同时执行。
还和我在一起吗?好吧
案例4:并行但不并行
还记得你的护照任务吗,你必须在排队等候的地方?因为这是你的护照,你的助手不能排队等你。因此,护照任务具有可中断性(您可以在排队等候时停止它,稍后当您的号码被呼叫时再继续),但没有独立性(您的助手不能代替您等待)。
案例5:并行但不并发
假设政府办公室有一个安全检查来进入办公场所。在这里,您必须移除所有电子设备并将其提交给官员,他们只会在您完成任务后归还您的设备。
在这种情况下,护照任务既不可独立,也不可中断。即使你在排队,你也不能做其他事情,因为你没有必要的设备。
同样地,假设演示是高度数学化的,你需要100%集中至少5小时。你不能在排队等候护照任务时做这件事,即使你随身携带笔记本电脑。
在这种情况下,演示任务是独立的(您或您的助手可以投入5小时的精力),但不能中断。
案例6:并发和并行执行
现在,假设除了指派你的助手参加演示外,你还随身携带一台笔记本电脑来完成护照任务。在排队等候时,您会看到您的助手在共享幻灯片组中创建了前10张幻灯片。你对他的工作发表了评论,并做了一些更正。后来,当你回到家时,你只需要15分钟,而不是2个小时来完成草稿。
这是可能的,因为演示任务具有独立性(你们中的任何一个都可以完成)和可中断性(你们可以停止它,稍后再继续它)。因此,您同时执行了两个任务,并并行执行了演示任务。
比方说,除了过于官僚之外,政府办公室也是腐败的。因此,你可以出示你的身份证,输入它,开始排队等待你的号码被呼叫,贿赂一名警卫和其他人来保持你在队伍中的位置,偷偷溜出去,在号码被呼叫之前回来,然后自己继续等待。
在这种情况下,您可以同时并行执行护照和演示任务。你可以偷偷溜出去,你的位置由你的助手掌握。然后你们两个都可以进行演示等。
回到计算机科学
在计算世界中,以下是每种情况的典型场景:
情况1:中断处理。情况2:只有一个处理器,但由于I/O,所有正在执行的任务都有等待时间。案例3:当我们谈论map reduce或hadoop集群时经常会看到。案例4:我认为案例4很罕见。任务是并发但不是并行的,这是不常见的。但这可能会发生。例如,假设您的任务需要访问只能通过处理器1访问的特殊计算芯片。因此,即使处理器-2是空闲的,而处理器-1正在执行其他任务,特殊计算任务也不能在处理器-2上继续。病例5:同样罕见,但不像病例4那样罕见。非并发代码可以是受互斥锁保护的关键区域。一旦启动,它必须执行到完成。然而,两个不同的关键区域可以在两个不同处理器上同时进行。案例6:IMO,关于并行或并发编程的大多数讨论基本上都在讨论案例6。这是并行和并发执行的混合和匹配。
并发和Go
如果你明白Rob Pike为什么说并发性更好,你必须明白原因是什么。你有一个非常长的任务,其中有多个等待期,你需要等待一些外部操作,如文件读取、网络下载。在他的演讲中,他所说的是,“把这一长串的任务分解,这样你就可以在等待的时候做一些有用的事情。”这就是为什么他会和各种各样的地鼠谈论不同的组织。
现在,围棋的力量来自于使用围棋关键词和频道,让这一突破变得非常容易。此外,在运行时中有很好的底层支持来调度这些goroutine。
但本质上,并发比并行好吗?
苹果比橙子好吗?
并发是指两个或多个任务可以在重叠的时间段内启动、运行和完成。这并不一定意味着它们会同时运行。例如,在单核机器上进行多任务处理。
并行性是指任务实际上同时运行,例如在多核处理器上。
引用Sun的多线程编程指南:
并发:至少有两个线程正在进行时存在的条件。一种更为普遍的并行形式,可以将时间切片作为虚拟并行的一种形式。并行性:当至少两个线程同时执行时出现的情况。
并发编程关注的是看似重叠的操作,主要关注的是由于非确定性控制流而产生的复杂性。与并发程序相关的定量成本通常是吞吐量和延迟。并发程序通常受IO限制,但并不总是如此,例如并发垃圾收集器完全在CPU上。并发程序的教学示例是网络爬虫。该程序启动对网页的请求,并在下载结果可用时同时接受响应,从而累积一组已访问的网页。控制流是非确定性的,因为每次运行程序时,响应不一定以相同的顺序接收。这种特性会使调试并发程序变得非常困难。有些应用程序基本上是并发的,例如web服务器必须同时处理客户端连接。Erlang可能是未来最有前途的高度并发编程语言。并行编程涉及为提高吞吐量的特定目标而重叠的操作。通过使控制流具有确定性,避免了并发编程的困难。通常,程序生成并行运行的子任务集,父任务仅在每个子任务完成后才继续。这使得并行程序更容易调试。并行编程的难点是针对粒度和通信等问题的性能优化。后者在多核环境中仍然是一个问题,因为将数据从一个缓存传输到另一个缓存会产生相当大的成本。密集矩阵矩阵乘法是并行编程的一个教学示例,它可以通过使用Straasen的分治算法和并行攻击子问题来有效地解决。Cilk可能是共享内存计算机(包括多核)上最有前途的高性能并行编程语言。
从我的回答中复制:https://stackoverflow.com/a/3982782
我将尝试用一个有趣且易于理解的示例进行解释。:)
假设一个组织组织了一场国际象棋比赛,10名棋手(棋艺相同)将挑战一名职业冠军棋手。由于国际象棋是一场1:1的比赛,因此组织者必须以高效的方式进行10场比赛,以便尽快完成整个比赛。
希望以下场景能够轻松描述进行这10场比赛的多种方式:
1) 串行-让我们假设专业人员与每个人逐一进行游戏,即与一个人开始和结束游戏,然后与下一个人开始下一场游戏,依此类推。换句话说,他们决定按顺序进行游戏。因此,如果一场比赛需要10分钟才能完成,那么10场比赛将需要100分钟,同样假设从一场比赛到另一场比赛的过渡需要6秒,那么对于10场比赛,则需要54秒(约1分钟)。
因此整个活动将在101分钟内完成(最差进场)
2) 同时-让我们假设职业球员轮到下一个球员,所以所有10名球员同时上场,但职业球员不是一次两个人,他轮到下一个人上场。现在假设一名职业球员需要6秒才能轮到他,而一名职业选手与两名选手的转换时间为6秒,那么回到第一名选手的总转换时间为1分钟(10x6秒)。因此,当他回到第一个与他一起开始比赛的人身边时,已经过去了2分钟(10xtime_per_turn_by-campion+10xtransition_time=2分钟)
假设所有玩家都需要45秒才能完成他们的回合,那么根据SERIAL事件的每场10分钟,游戏结束前的回合数应为600/(45+6)=11回合(约)
因此,整个事件将在11xtime_per_turn_by-player_&_champion+11xtransition_time_across_10_players=11x51+11x60sec=561+660=1221sec=20.35min(大约)内完成
从101分钟提高到20.35分钟(更好的方法)
3) 平行-假设组织者获得了一些额外的资金,因此决定邀请两名职业冠军选手(两人能力相同),并将同一组10名选手(挑战者)分成两组,每组5人,并将他们分配给两名冠军,即每组一人。现在,赛事在这两组比赛中并行进行,即至少有两名选手(每组一名)与各自组的两名职业选手进行比赛。
然而,在该组中,职业选手一次只带一名选手(即按顺序),因此无需任何计算,您可以很容易地推断出整个比赛将在101/2=50.5分钟内完成
看到从101分钟到50.5分钟的进步(好方法)
4) 并发+并行-在上述场景中,假设两名冠军选手将与各自组中的5名选手同时比赛(读第二分),因此现在跨组的比赛是并行运行的,但在组内,他们是同时运行的。
因此,一组游戏将在11xtime_per_turn_by-playerer_&_champion+1extransition_time_across_5_layers=11x51+11x30=600+330=930秒=15.5分钟(大约)内完成
因此,整个活动(包括两个这样的平行跑步组)大约将在15.5分钟内完成
看到从101分钟到15.5分钟的改进(最佳方法)
注意:在上述场景中,如果您用10个类似的工作替换10个玩家,用两个CPU核心替换两个职业玩家,则以下顺序仍然正确:
串行>并行>并发>并发+并行
(注意:此顺序可能会因其他情况而改变,因为此顺序高度依赖于作业之间的相互依赖性、作业之间的通信需求以及作业之间的转换开销)
推荐文章
- foreach和map有区别吗?
- 设计模式:工厂vs工厂方法vs抽象工厂
- 为什么处理排序数组比未排序数组慢?
- 构造函数何时抛出异常是正确的?
- Thread start()和Runnable run()有什么区别
- 什么是“一级”对象?
- 什么时候应该使用Debug.Assert()?
- 为什么浮点数不准确?
- IOException:进程不能访问文件“文件路径”,因为它正在被另一个进程使用
- 地图和字典的区别是什么?
- 跳跃表vs.二叉搜索树
- 在Swift中,什么相当于Objective-C的“@synchronized”?
- 是AsyncTask真的概念上有缺陷或我只是错过了一些东西?
- 递归还是迭代?
- Stack Overflow如何生成其seo友好的url ?