我如何能看到什么是在S3桶与boto3?(例如,写一个“ls”)?

做以下事情:

import boto3
s3 = boto3.resource('s3')
my_bucket = s3.Bucket('some/path/')

返回:

s3.Bucket(name='some/path/')

我如何看到它的内容?


当前回答

从lambda函数运行aws cli命令也是一个不错的选择

import subprocess
import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def run_command(command):
    command_list = command.split(' ')

    try:
        logger.info("Running shell command: \"{}\"".format(command))
        result = subprocess.run(command_list, stdout=subprocess.PIPE);
        logger.info("Command output:\n---\n{}\n---".format(result.stdout.decode('UTF-8')))
    except Exception as e:
        logger.error("Exception: {}".format(e))
        return False

    return True

def lambda_handler(event, context):
    run_command('/opt/aws s3 ls s3://bucket-name')

其他回答

ObjectSummary:

有两个标识符附加到ObjectSummary:

bucket_name 关键

boto3 S3: ObjectSummary

有关AWS S3文档中的对象键的更多信息:

Object Keys: When you create an object, you specify the key name, which uniquely identifies the object in the bucket. For example, in the Amazon S3 console (see AWS Management Console), when you highlight a bucket, a list of objects in your bucket appears. These names are the object keys. The name for a key is a sequence of Unicode characters whose UTF-8 encoding is at most 1024 bytes long. The Amazon S3 data model is a flat structure: you create a bucket, and the bucket stores objects. There is no hierarchy of subbuckets or subfolders; however, you can infer logical hierarchy using key name prefixes and delimiters as the Amazon S3 console does. The Amazon S3 console supports a concept of folders. Suppose that your bucket (admin-created) has four objects with the following object keys: Development/Projects1.xls Finance/statement1.pdf Private/taxdocument.pdf s3-dg.pdf Reference: AWS S3: Object Keys

下面是一些示例代码,演示如何获取桶名和对象键。

例子:

import boto3
from pprint import pprint

def main():

    def enumerate_s3():
        s3 = boto3.resource('s3')
        for bucket in s3.buckets.all():
             print("Name: {}".format(bucket.name))
             print("Creation Date: {}".format(bucket.creation_date))
             for object in bucket.objects.all():
                 print("Object: {}".format(object))
                 print("Object bucket_name: {}".format(object.bucket_name))
                 print("Object key: {}".format(object.key))

    enumerate_s3()


if __name__ == '__main__':
    main()
import boto3
s3 = boto3.resource('s3')

## Bucket to use
my_bucket = s3.Bucket('city-bucket')

## List objects within a given prefix
for obj in my_bucket.objects.filter(Delimiter='/', Prefix='city/'):
  print obj.key

输出:

city/pune.csv
city/goa.csv

首先,创建一个s3客户端对象:

s3_client = boto3.client('s3')

接下来,创建一个变量来保存bucket名称和文件夹。注意文件夹名后面的斜杠“/”:

bucket_name = 'my-bucket'
folder = 'some-folder/'

接下来,调用s3_client。List_objects_v2获取文件夹内容对象的元数据:

response = s3_client.list_objects_v2(
  Bucket=bucket_name,
  Prefix=folder
)

最后,使用对象的元数据,您可以通过调用s3_client来获取S3对象。get_object功能:

for object_metadata in response['Contents']:
    object_key = object_metadata['Key']
    response = s3_client.get_object(
        Bucket=bucket_name,
        Key=object_key
    )
    object_body = response['Body'].read()
    print(object_body)

如你所见,字符串格式的对象内容可以通过调用response['Body'].read()来获得。

我假设您已经单独配置了身份验证。

import boto3
s3 = boto3.resource('s3')

my_bucket = s3.Bucket('bucket_name')

for file in my_bucket.objects.all():
    print(file.key)

一种更节俭的方法,而不是通过一个for循环来迭代,你也可以只打印原始对象,其中包含S3桶中的所有文件:

session = Session(aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key)
s3 = session.resource('s3')
bucket = s3.Bucket('bucket_name')

files_in_s3 = bucket.objects.all() 
#you can print this iterable with print(list(files_in_s3))