我如何能看到什么是在S3桶与boto3?(例如,写一个“ls”)?

做以下事情:

import boto3
s3 = boto3.resource('s3')
my_bucket = s3.Bucket('some/path/')

返回:

s3.Bucket(name='some/path/')

我如何看到它的内容?


当前回答

我的s3键实用函数本质上是@Hephaestus的答案的优化版本:

import boto3


s3_paginator = boto3.client('s3').get_paginator('list_objects_v2')


def keys(bucket_name, prefix='/', delimiter='/', start_after=''):
    prefix = prefix.lstrip(delimiter)
    start_after = (start_after or prefix) if prefix.endswith(delimiter) else start_after
    for page in s3_paginator.paginate(Bucket=bucket_name, Prefix=prefix, StartAfter=start_after):
        for content in page.get('Contents', ()):
            yield content['Key']

在我的测试(boto3 1.9.84)中,它比等效的(但更简单)代码要快得多:

import boto3


def keys(bucket_name, prefix='/', delimiter='/'):
    prefix = prefix.lstrip(delimiter)
    bucket = boto3.resource('s3').Bucket(bucket_name)
    return (_.key for _ in bucket.objects.filter(Prefix=prefix))

由于S3保证UTF-8二进制排序结果,因此在第一个函数中添加了start_after优化。

其他回答

在上面的注释中对@Hephaeastus的代码进行了少许修改,编写了下面的方法来列出给定路径中的文件夹和对象(文件)。类似s3 ls命令。

from boto3 import session

def s3_ls(profile=None, bucket_name=None, folder_path=None):
    folders=[]
    files=[]
    result=dict()
    bucket_name = bucket_name
    prefix= folder_path
    session = boto3.Session(profile_name=profile)
    s3_conn   = session.client('s3')
    s3_result =  s3_conn.list_objects_v2(Bucket=bucket_name, Delimiter = "/", Prefix=prefix)
    if 'Contents' not in s3_result and 'CommonPrefixes' not in s3_result:
        return []

    if s3_result.get('CommonPrefixes'):
        for folder in s3_result['CommonPrefixes']:
            folders.append(folder.get('Prefix'))

    if s3_result.get('Contents'):
        for key in s3_result['Contents']:
            files.append(key['Key'])

    while s3_result['IsTruncated']:
        continuation_key = s3_result['NextContinuationToken']
        s3_result = s3_conn.list_objects_v2(Bucket=bucket_name, Delimiter="/", ContinuationToken=continuation_key, Prefix=prefix)
        if s3_result.get('CommonPrefixes'):
            for folder in s3_result['CommonPrefixes']:
                folders.append(folder.get('Prefix'))
        if s3_result.get('Contents'):
            for key in s3_result['Contents']:
                files.append(key['Key'])

    if folders:
        result['folders']=sorted(folders)
    if files:
        result['files']=sorted(files)
    return result

这将列出给定路径下的所有对象/文件夹。Folder_path可以默认为None, method将列出桶根目录的即时内容。

为了处理大型键列表(即当目录列表大于1000项时),我使用以下代码将多个列表中的键值(即文件名)累积起来(感谢上面的阿梅里奥的第一行)。代码是针对python3的:

    from boto3  import client
    bucket_name = "my_bucket"
    prefix      = "my_key/sub_key/lots_o_files"

    s3_conn   = client('s3')  # type: BaseClient  ## again assumes boto.cfg setup, assume AWS S3
    s3_result =  s3_conn.list_objects_v2(Bucket=bucket_name, Prefix=prefix, Delimiter = "/")

    if 'Contents' not in s3_result:
        #print(s3_result)
        return []

    file_list = []
    for key in s3_result['Contents']:
        file_list.append(key['Key'])
    print(f"List count = {len(file_list)}")

    while s3_result['IsTruncated']:
        continuation_key = s3_result['NextContinuationToken']
        s3_result = s3_conn.list_objects_v2(Bucket=bucket_name, Prefix=prefix, Delimiter="/", ContinuationToken=continuation_key)
        for key in s3_result['Contents']:
            file_list.append(key['Key'])
        print(f"List count = {len(file_list)}")
    return file_list

ObjectSummary:

有两个标识符附加到ObjectSummary:

bucket_name 关键

boto3 S3: ObjectSummary

有关AWS S3文档中的对象键的更多信息:

Object Keys: When you create an object, you specify the key name, which uniquely identifies the object in the bucket. For example, in the Amazon S3 console (see AWS Management Console), when you highlight a bucket, a list of objects in your bucket appears. These names are the object keys. The name for a key is a sequence of Unicode characters whose UTF-8 encoding is at most 1024 bytes long. The Amazon S3 data model is a flat structure: you create a bucket, and the bucket stores objects. There is no hierarchy of subbuckets or subfolders; however, you can infer logical hierarchy using key name prefixes and delimiters as the Amazon S3 console does. The Amazon S3 console supports a concept of folders. Suppose that your bucket (admin-created) has four objects with the following object keys: Development/Projects1.xls Finance/statement1.pdf Private/taxdocument.pdf s3-dg.pdf Reference: AWS S3: Object Keys

下面是一些示例代码,演示如何获取桶名和对象键。

例子:

import boto3
from pprint import pprint

def main():

    def enumerate_s3():
        s3 = boto3.resource('s3')
        for bucket in s3.buckets.all():
             print("Name: {}".format(bucket.name))
             print("Creation Date: {}".format(bucket.creation_date))
             for object in bucket.objects.all():
                 print("Object: {}".format(object))
                 print("Object bucket_name: {}".format(object.bucket_name))
                 print("Object key: {}".format(object.key))

    enumerate_s3()


if __name__ == '__main__':
    main()

这类似于'ls',但它没有考虑到前缀文件夹约定,并将列出bucket中的对象。由读取器来过滤掉作为Key名称一部分的前缀。

在Python 2中:

from boto.s3.connection import S3Connection

conn = S3Connection() # assumes boto.cfg setup
bucket = conn.get_bucket('bucket_name')
for obj in bucket.get_all_keys():
    print(obj.key)

在Python 3中:

from boto3 import client

conn = client('s3')  # again assumes boto.cfg setup, assume AWS S3
for key in conn.list_objects(Bucket='bucket_name')['Contents']:
    print(key['Key'])

我只是这样做的,包括身份验证方法:

s3_client = boto3.client(
                's3',
                aws_access_key_id='access_key',
                aws_secret_access_key='access_key_secret',
                config=boto3.session.Config(signature_version='s3v4'),
                region_name='region'
            )

response = s3_client.list_objects(Bucket='bucket_name', Prefix=key)
if ('Contents' in response):
    # Object / key exists!
    return True
else:
    # Object / key DOES NOT exist!
    return False