Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

简单基底变换

def int_to_str(x, b):
    s = ""
    while x:
        s = str(x % b) + s
        x //= b
    return s

输出的例子,没有0到基数9

s = ""
x = int(input())
while x:
    if x % 9 == 0:
        s = "9" + s
        x -= x % 10
        x = x // 9
    else:
        s = str(x % 9) + s
        x = x // 9

print(s)

其他回答

我提出了一个“非优化”的2到9基的解决方案:

  def to_base(N, base=2):
    N_in_base = ''
    while True:
        N_in_base = str(N % base) + N_in_base
        N //= base
        if N == 0:
            break
    return N_in_base

这个解决方案不需要反转最终结果,但实际上并没有优化。请参考以下答案了解原因:https://stackoverflow.com/a/37133870/7896998

另一个简短的(在我看来更容易理解):

def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
    return (int_to_str(n/b, b, symbols) if n >= b else "") + symbols[n%b]

通过适当的异常处理:

def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
    try:
        return (int_to_str(n/b, b) if n >= b else "") + symbols[n%b]
    except IndexError:
        raise ValueError(
            "The symbols provided are not enough to represent this number in "
            "this base")
def base_conversion(num, base):
    digits = []
    while num > 0:
        num, remainder = divmod(num, base)
        digits.append(remainder)
    return digits[::-1]

这就是我的方法。首先转换数字,然后将其转换为字符串。

    def to_base(n, base):
        if base == 10:
            return n
        
        result = 0
        counter = 0
        
        while n:
            r = n % base
            n //= base
            result += r * 10**counter
            counter+=1
        return str(result)

假设我们想把14转换成2进制。我们反复应用除法算法,直到商为0:

14 = 2 × 7

7 = 2 × 3 + 1

3 = 2 × 1 + 1

1 = 2 × 0 + 1

二进制表示就是从下往上读的余数。这可以通过展开来证明

14 = 2 × 7 = 2 × (2 × 3 + 1) = 2 × (2 × (2 × 1 + 1) + 1) = 2 × (2 × (2 × 0 + 1) + 1) = 2^3 + 2^2 + 2

本代码是上述算法的实现。

def toBaseX(n, X):
strbin = ""
while n != 0:
    strbin += str(n % X)
    n = n // X
return strbin[::-1]