我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

您可以定义一个返回生成器的函数

def f():
  def FunctionWithYield(generator_args):
    code here...

  return FunctionWithYield

现在你可以想做多少次就做多少次:

for x in f()(generator_args): print(x)
for x in f()(generator_args): print(x)

其他回答

我想为一个老问题提供一个不同的解决方案

class IterableAdapter:
    def __init__(self, iterator_factory):
        self.iterator_factory = iterator_factory

    def __iter__(self):
        return self.iterator_factory()

squares = IterableAdapter(lambda: (x * x for x in range(5)))

for x in squares: print(x)
for x in squares: print(x)

与list(iterator)相比,这样做的好处是它的空间复杂度是O(1),而list(iterator)是O(n)。缺点是,如果你只能访问迭代器,而不能访问产生迭代器的函数,那么你就不能使用这个方法。例如,这样做似乎是合理的,但它不会起作用。

g = (x * x for x in range(5))

squares = IterableAdapter(lambda: g)

for x in squares: print(x)
for x in squares: print(x)

现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。

通过> pip Install more_itertools安装

import more_itertools as mit


y = mit.seekable(FunctionWithYield())
for x in y:
    print(x)

y.seek(0)                                              # reset iterator
for x in y:
    print(x)

注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。

没有重置迭代器的选项。迭代器通常在遍历next()函数时弹出。唯一的方法是在迭代迭代器对象之前进行备份。下面的检查。

创建包含0到9项的迭代器对象

i=iter(range(10))

遍历将弹出的next()函数

print(next(i))

将迭代器对象转换为list

L=list(i)
print(L)
output: [1, 2, 3, 4, 5, 6, 7, 8, 9]

所以第0项已经跳出来了。此外,当我们将迭代器转换为list时,所有的项都会弹出。

next(L) 

Traceback (most recent call last):
  File "<pyshell#129>", line 1, in <module>
    next(L)
StopIteration

因此,在开始迭代之前,需要将迭代器转换为列表以备备份。 List可以用iter(< List -object>)转换为迭代器

如果你的生成器在某种意义上是纯的,它的输出只依赖于传递的参数和步长,并且你希望生成的生成器是可重新启动的,这里有一个排序代码片段可能很方便:

import copy

def generator(i):
    yield from range(i)

g = generator(10)
print(list(g))
print(list(g))

class GeneratorRestartHandler(object):
    def __init__(self, gen_func, argv, kwargv):
        self.gen_func = gen_func
        self.argv = copy.copy(argv)
        self.kwargv = copy.copy(kwargv)
        self.local_copy = iter(self)

    def __iter__(self):
        return self.gen_func(*self.argv, **self.kwargv)

    def __next__(self):
        return next(self.local_copy)

def restartable(g_func: callable) -> callable:
    def tmp(*argv, **kwargv):
        return GeneratorRestartHandler(g_func, argv, kwargv)

    return tmp

@restartable
def generator2(i):
    yield from range(i)

g = generator2(10)
print(next(g))
print(list(g))
print(list(g))
print(next(g))

输出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[]
0
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1

另一种选择是使用itertools.tee()函数创建生成器的第二个版本:

import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
    print(x)
for x in y_backup:
    print(x)

从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。