我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

您可以定义一个返回生成器的函数

def f():
  def FunctionWithYield(generator_args):
    code here...

  return FunctionWithYield

现在你可以想做多少次就做多少次:

for x in f()(generator_args): print(x)
for x in f()(generator_args): print(x)

其他回答

您可以定义一个返回生成器的函数

def f():
  def FunctionWithYield(generator_args):
    code here...

  return FunctionWithYield

现在你可以想做多少次就做多少次:

for x in f()(generator_args): print(x)
for x in f()(generator_args): print(x)

如果GrzegorzOledzki的答案还不够,那么可以使用send()来实现目标。有关增强生成器和yield表达式的更多详细信息,请参阅PEP-0342。

更新:参见itertools.tee()。它涉及到上面提到的内存与处理之间的一些权衡,但它可能比仅将生成器结果存储在列表中节省一些内存;这取决于你如何使用发电机。

另一种选择是使用itertools.tee()函数创建生成器的第二个版本:

import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
    print(x)
for x in y_backup:
    print(x)

从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。

现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。

通过> pip Install more_itertools安装

import more_itertools as mit


y = mit.seekable(FunctionWithYield())
for x in y:
    print(x)

y.seek(0)                                              # reset iterator
for x in y:
    print(x)

注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。

我想为一个老问题提供一个不同的解决方案

class IterableAdapter:
    def __init__(self, iterator_factory):
        self.iterator_factory = iterator_factory

    def __iter__(self):
        return self.iterator_factory()

squares = IterableAdapter(lambda: (x * x for x in range(5)))

for x in squares: print(x)
for x in squares: print(x)

与list(iterator)相比,这样做的好处是它的空间复杂度是O(1),而list(iterator)是O(n)。缺点是,如果你只能访问迭代器,而不能访问产生迭代器的函数,那么你就不能使用这个方法。例如,这样做似乎是合理的,但它不会起作用。

g = (x * x for x in range(5))

squares = IterableAdapter(lambda: g)

for x in squares: print(x)
for x in squares: print(x)