我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
当前回答
如果你的生成器在某种意义上是纯的,它的输出只依赖于传递的参数和步长,并且你希望生成的生成器是可重新启动的,这里有一个排序代码片段可能很方便:
import copy
def generator(i):
yield from range(i)
g = generator(10)
print(list(g))
print(list(g))
class GeneratorRestartHandler(object):
def __init__(self, gen_func, argv, kwargv):
self.gen_func = gen_func
self.argv = copy.copy(argv)
self.kwargv = copy.copy(kwargv)
self.local_copy = iter(self)
def __iter__(self):
return self.gen_func(*self.argv, **self.kwargv)
def __next__(self):
return next(self.local_copy)
def restartable(g_func: callable) -> callable:
def tmp(*argv, **kwargv):
return GeneratorRestartHandler(g_func, argv, kwargv)
return tmp
@restartable
def generator2(i):
yield from range(i)
g = generator2(10)
print(next(g))
print(list(g))
print(list(g))
print(next(g))
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[]
0
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1
其他回答
它可以通过code对象来实现。下面是一个例子。
code_str="y=(a for a in [1,2,3,4])"
code1=compile(code_str,'<string>','single')
exec(code1)
for i in y: print i
1 2 3 4
for i in y: print i
exec(code1)
for i in y: print i
1 2 3 4
你可以使用itertools.cycle()来实现这一点。 您可以使用此方法创建一个迭代器,然后在迭代器上执行for循环,迭代器将对其值进行循环。
例如:
def generator():
for j in cycle([i for i in range(5)]):
yield j
gen = generator()
for i in range(20):
print(next(gen))
将生成20个数字,0到4重复。
医生说:
Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iterable).
好吧,你说你想多次调用一个生成器,但初始化是昂贵的…像这样的东西怎么样?
class InitializedFunctionWithYield(object):
def __init__(self):
# do expensive initialization
self.start = 5
def __call__(self, *args, **kwargs):
# do cheap iteration
for i in xrange(5):
yield self.start + i
y = InitializedFunctionWithYield()
for x in y():
print x
for x in y():
print x
或者,你也可以创建自己的类,遵循迭代器协议,并定义某种“reset”函数。
class MyIterator(object):
def __init__(self):
self.reset()
def reset(self):
self.i = 5
def __iter__(self):
return self
def next(self):
i = self.i
if i > 0:
self.i -= 1
return i
else:
raise StopIteration()
my_iterator = MyIterator()
for x in my_iterator:
print x
print 'resetting...'
my_iterator.reset()
for x in my_iterator:
print x
https://docs.python.org/2/library/stdtypes.html#iterator-types http://anandology.com/python-practice-book/iterators.html
现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。
通过> pip Install more_itertools安装
import more_itertools as mit
y = mit.seekable(FunctionWithYield())
for x in y:
print(x)
y.seek(0) # reset iterator
for x in y:
print(x)
注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。
另一种选择是使用itertools.tee()函数创建生成器的第二个版本:
import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
print(x)
for x in y_backup:
print(x)
从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。