我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

如果你的生成器在某种意义上是纯的,它的输出只依赖于传递的参数和步长,并且你希望生成的生成器是可重新启动的,这里有一个排序代码片段可能很方便:

import copy

def generator(i):
    yield from range(i)

g = generator(10)
print(list(g))
print(list(g))

class GeneratorRestartHandler(object):
    def __init__(self, gen_func, argv, kwargv):
        self.gen_func = gen_func
        self.argv = copy.copy(argv)
        self.kwargv = copy.copy(kwargv)
        self.local_copy = iter(self)

    def __iter__(self):
        return self.gen_func(*self.argv, **self.kwargv)

    def __next__(self):
        return next(self.local_copy)

def restartable(g_func: callable) -> callable:
    def tmp(*argv, **kwargv):
        return GeneratorRestartHandler(g_func, argv, kwargv)

    return tmp

@restartable
def generator2(i):
    yield from range(i)

g = generator2(10)
print(next(g))
print(list(g))
print(list(g))
print(next(g))

输出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[]
0
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1

其他回答

它可以通过code对象来实现。下面是一个例子。

code_str="y=(a for a in [1,2,3,4])"
code1=compile(code_str,'<string>','single')
exec(code1)
for i in y: print i

1 2 3 4

for i in y: print i


exec(code1)
for i in y: print i

1 2 3 4

你可以使用itertools.cycle()来实现这一点。 您可以使用此方法创建一个迭代器,然后在迭代器上执行for循环,迭代器将对其值进行循环。

例如:

def generator():
for j in cycle([i for i in range(5)]):
    yield j

gen = generator()
for i in range(20):
    print(next(gen))

将生成20个数字,0到4重复。

医生说:

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iterable).

好吧,你说你想多次调用一个生成器,但初始化是昂贵的…像这样的东西怎么样?

class InitializedFunctionWithYield(object):
    def __init__(self):
        # do expensive initialization
        self.start = 5

    def __call__(self, *args, **kwargs):
        # do cheap iteration
        for i in xrange(5):
            yield self.start + i

y = InitializedFunctionWithYield()

for x in y():
    print x

for x in y():
    print x

或者,你也可以创建自己的类,遵循迭代器协议,并定义某种“reset”函数。

class MyIterator(object):
    def __init__(self):
        self.reset()

    def reset(self):
        self.i = 5

    def __iter__(self):
        return self

    def next(self):
        i = self.i
        if i > 0:
            self.i -= 1
            return i
        else:
            raise StopIteration()

my_iterator = MyIterator()

for x in my_iterator:
    print x

print 'resetting...'
my_iterator.reset()

for x in my_iterator:
    print x

https://docs.python.org/2/library/stdtypes.html#iterator-types http://anandology.com/python-practice-book/iterators.html

现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。

通过> pip Install more_itertools安装

import more_itertools as mit


y = mit.seekable(FunctionWithYield())
for x in y:
    print(x)

y.seek(0)                                              # reset iterator
for x in y:
    print(x)

注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。

另一种选择是使用itertools.tee()函数创建生成器的第二个版本:

import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
    print(x)
for x in y_backup:
    print(x)

从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。