我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

另一种选择是使用itertools.tee()函数创建生成器的第二个版本:

import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
    print(x)
for x in y_backup:
    print(x)

从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。

其他回答

我不知道你说的昂贵的准备是什么意思,但我猜你确实有

data = ... # Expensive computation
y = FunctionWithYield(data)
for x in y: print(x)
#here must be something to reset 'y'
# this is expensive - data = ... # Expensive computation
# y = FunctionWithYield(data)
for x in y: print(x)

如果是这样的话,为什么不重用数据呢?

你可以使用itertools.cycle()来实现这一点。 您可以使用此方法创建一个迭代器,然后在迭代器上执行for循环,迭代器将对其值进行循环。

例如:

def generator():
for j in cycle([i for i in range(5)]):
    yield j

gen = generator()
for i in range(20):
    print(next(gen))

将生成20个数字,0到4重复。

医生说:

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iterable).

您可以定义一个返回生成器的函数

def f():
  def FunctionWithYield(generator_args):
    code here...

  return FunctionWithYield

现在你可以想做多少次就做多少次:

for x in f()(generator_args): print(x)
for x in f()(generator_args): print(x)

另一种选择是使用itertools.tee()函数创建生成器的第二个版本:

import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
    print(x)
for x in y_backup:
    print(x)

从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。

这对我来说是工作。

csv_rows = my_generator()
for _ in range(10):
    for row in csv_rows:
        print(row)
    csv_rows = my_generator()