我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
当前回答
现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。
通过> pip Install more_itertools安装
import more_itertools as mit
y = mit.seekable(FunctionWithYield())
for x in y:
print(x)
y.seek(0) # reset iterator
for x in y:
print(x)
注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。
其他回答
现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。
通过> pip Install more_itertools安装
import more_itertools as mit
y = mit.seekable(FunctionWithYield())
for x in y:
print(x)
y.seek(0) # reset iterator
for x in y:
print(x)
注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。
另一种选择是使用itertools.tee()函数创建生成器的第二个版本:
import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
print(x)
for x in y_backup:
print(x)
从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。
如果GrzegorzOledzki的答案还不够,那么可以使用send()来实现目标。有关增强生成器和yield表达式的更多详细信息,请参阅PEP-0342。
更新:参见itertools.tee()。它涉及到上面提到的内存与处理之间的一些权衡,但它可能比仅将生成器结果存储在列表中节省一些内存;这取决于你如何使用发电机。
您可以定义一个返回生成器的函数
def f():
def FunctionWithYield(generator_args):
code here...
return FunctionWithYield
现在你可以想做多少次就做多少次:
for x in f()(generator_args): print(x)
for x in f()(generator_args): print(x)
如果你的生成器在某种意义上是纯的,它的输出只依赖于传递的参数和步长,并且你希望生成的生成器是可重新启动的,这里有一个排序代码片段可能很方便:
import copy
def generator(i):
yield from range(i)
g = generator(10)
print(list(g))
print(list(g))
class GeneratorRestartHandler(object):
def __init__(self, gen_func, argv, kwargv):
self.gen_func = gen_func
self.argv = copy.copy(argv)
self.kwargv = copy.copy(kwargv)
self.local_copy = iter(self)
def __iter__(self):
return self.gen_func(*self.argv, **self.kwargv)
def __next__(self):
return next(self.local_copy)
def restartable(g_func: callable) -> callable:
def tmp(*argv, **kwargv):
return GeneratorRestartHandler(g_func, argv, kwargv)
return tmp
@restartable
def generator2(i):
yield from range(i)
g = generator2(10)
print(next(g))
print(list(g))
print(list(g))
print(next(g))
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[]
0
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1