如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
当前回答
如果性能是一个问题,我会使用operator.itemgetter而不是lambda,因为内置函数比手工制作的函数执行得更快。根据我的测试,itemgetter函数的执行速度似乎比lambda快20%左右。
从…起https://wiki.python.org/moin/PythonSpeed:
同样,内置函数的运行速度也比手工构建的等效函数快。例如,map(operator.add,v1,v2)比map(lambda x,y:x+y,v1,v2)更快。
下面是lambda与itemgetter排序速度的比较。
import random
import operator
# Create a list of 100 dicts with random 8-letter names and random ages from 0 to 100.
l = [{'name': ''.join(random.choices(string.ascii_lowercase, k=8)), 'age': random.randint(0, 100)} for i in range(100)]
# Test the performance with a lambda function sorting on name
%timeit sorted(l, key=lambda x: x['name'])
13 µs ± 388 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
# Test the performance with itemgetter sorting on name
%timeit sorted(l, key=operator.itemgetter('name'))
10.7 µs ± 38.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
# Check that each technique produces the same sort order
sorted(l, key=lambda x: x['name']) == sorted(l, key=operator.itemgetter('name'))
True
这两种技术都以相同的顺序对列表进行排序(通过在代码块中执行最终语句来验证),但第一种排序速度稍快。
其他回答
使用来自Perl的Schwartzian变换,
py = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
do
sort_on = "name"
decorated = [(dict_[sort_on], dict_) for dict_ in py]
decorated.sort()
result = [dict_ for (key, dict_) in decorated]
给予
>>> result
[{'age': 10, 'name': 'Bart'}, {'age': 39, 'name': 'Homer'}]
有关Perl Schwartzian转换的更多信息:
在计算机科学中,施瓦茨变换是一种Perl编程用于提高项目列表排序效率的习惯用法。这当排序为实际上基于元素,其中计算该属性是一项密集的操作应执行最少次数。施瓦茨学派Transform的显著之处在于它不使用命名的临时数组。
my_list = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
my_list.sort(lambda x,y : cmp(x['name'], y['name']))
my_list现在将是您想要的。
或者更好:
自从Python2.4以来,有一个关键的论点更高效、更整洁:
my_list = sorted(my_list, key=lambda k: k['name'])
…lambda比operator.itemgetter更容易理解,但您的里程数可能会有所不同。
您必须实现自己的比较函数,该函数将通过名称键的值来比较字典。参见PythonInfo Wiki中的排序迷你如何
按多个列排序,其中一些列按降序排序:cmps数组是cmp函数的全局数组,包含字段名,对于desc,inv==-1,对于asc
def cmpfun(a, b):
for (name, inv) in cmps:
res = cmp(a[name], b[name])
if res != 0:
return res * inv
return 0
data = [
dict(name='alice', age=10),
dict(name='baruch', age=9),
dict(name='alice', age=11),
]
all_cmps = [
[('name', 1), ('age', -1)],
[('name', 1), ('age', 1)],
[('name', -1), ('age', 1)],]
print 'data:', data
for cmps in all_cmps: print 'sort:', cmps; print sorted(data, cmpfun)
使用Pandas包是另一种方法,尽管其大规模运行时比其他人提出的更传统的方法慢得多:
import pandas as pd
listOfDicts = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
df = pd.DataFrame(listOfDicts)
df = df.sort_values('name')
sorted_listOfDicts = df.T.to_dict().values()
下面是一个小列表和一个大(100k+)的字典列表的一些基准值:
setup_large = "listOfDicts = [];\
[listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10})) for _ in range(50000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"
setup_small = "listOfDicts = [];\
listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"
method1 = "newlist = sorted(listOfDicts, key=lambda k: k['name'])"
method2 = "newlist = sorted(listOfDicts, key=itemgetter('name')) "
method3 = "df = df.sort_values('name');\
sorted_listOfDicts = df.T.to_dict().values()"
import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))
t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_large)
print('Large Method Pandas: ' + str(t.timeit(1)))
#Small Method LC: 0.000163078308105
#Small Method LC2: 0.000134944915771
#Small Method Pandas: 0.0712950229645
#Large Method LC: 0.0321750640869
#Large Method LC2: 0.0206089019775
#Large Method Pandas: 5.81405615807