如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
当前回答
有时我们需要使用lower()进行不区分大小写的排序。例如
lists = [{'name':'Homer', 'age':39},
{'name':'Bart', 'age':10},
{'name':'abby', 'age':9}]
lists = sorted(lists, key=lambda k: k['name'])
print(lists)
# Bart, Homer, abby
# [{'name':'Bart', 'age':10}, {'name':'Homer', 'age':39}, {'name':'abby', 'age':9}]
lists = sorted(lists, key=lambda k: k['name'].lower())
print(lists)
# abby, Bart, Homer
# [ {'name':'abby', 'age':9}, {'name':'Bart', 'age':10}, {'name':'Homer', 'age':39}]
其他回答
您可以使用以下选项:
lst = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
sorted_lst = sorted(lst, key=lambda x: x['age']) # change this to sort by a different field
print(sorted_lst)
您可以使用自定义比较函数,也可以传入计算自定义排序键的函数。这通常更有效,因为每个项只计算一次键,而比较函数将被调用多次。
你可以这样做:
def mykey(adict): return adict['name']
x = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age':10}]
sorted(x, key=mykey)
但是标准库包含一个获取任意对象项的通用例程:itemgetter。因此,请尝试以下操作:
from operator import itemgetter
x = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age':10}]
sorted(x, key=itemgetter('name'))
使用来自Perl的Schwartzian变换,
py = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
do
sort_on = "name"
decorated = [(dict_[sort_on], dict_) for dict_ in py]
decorated.sort()
result = [dict_ for (key, dict_) in decorated]
给予
>>> result
[{'age': 10, 'name': 'Bart'}, {'age': 39, 'name': 'Homer'}]
有关Perl Schwartzian转换的更多信息:
在计算机科学中,施瓦茨变换是一种Perl编程用于提高项目列表排序效率的习惯用法。这当排序为实际上基于元素,其中计算该属性是一项密集的操作应执行最少次数。施瓦茨学派Transform的显著之处在于它不使用命名的临时数组。
使用Pandas包是另一种方法,尽管其大规模运行时比其他人提出的更传统的方法慢得多:
import pandas as pd
listOfDicts = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
df = pd.DataFrame(listOfDicts)
df = df.sort_values('name')
sorted_listOfDicts = df.T.to_dict().values()
下面是一个小列表和一个大(100k+)的字典列表的一些基准值:
setup_large = "listOfDicts = [];\
[listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10})) for _ in range(50000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"
setup_small = "listOfDicts = [];\
listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"
method1 = "newlist = sorted(listOfDicts, key=lambda k: k['name'])"
method2 = "newlist = sorted(listOfDicts, key=itemgetter('name')) "
method3 = "df = df.sort_values('name');\
sorted_listOfDicts = df.T.to_dict().values()"
import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))
t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_large)
print('Large Method Pandas: ' + str(t.timeit(1)))
#Small Method LC: 0.000163078308105
#Small Method LC2: 0.000134944915771
#Small Method Pandas: 0.0712950229645
#Large Method LC: 0.0321750640869
#Large Method LC2: 0.0206089019775
#Large Method Pandas: 5.81405615807
假设我有一本字典D,其中包含以下元素。要排序,只需使用sorted中的key参数传递自定义函数,如下所示:
D = {'eggs': 3, 'ham': 1, 'spam': 2}
def get_count(tuple):
return tuple[1]
sorted(D.items(), key = get_count, reverse=True)
# Or
sorted(D.items(), key = lambda x: x[1], reverse=True) # Avoiding get_count function call
看看这个。