如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
当前回答
import operator
a_list_of_dicts.sort(key=operator.itemgetter('name'))
“key”用于按任意值排序,“itemgetter”将该值设置为每个项的“name”属性。
其他回答
我一直是lambda过滤器的忠实粉丝。然而,若考虑到时间复杂性,这并不是最好的选择。
第一个选项
sorted_list = sorted(list_to_sort, key= lambda x: x['name'])
# Returns list of values
第二个选项
list_to_sort.sort(key=operator.itemgetter('name'))
# Edits the list, and does not return a new list
快速比较执行时间
# First option
python3.6 -m timeit -s "list_to_sort = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}, {'name':'Faaa', 'age':57}, {'name':'Errr', 'age':20}]" -s "sorted_l=[]" "sorted_l = sorted(list_to_sort, key=lambda e: e['name'])"
1000000个循环,最好为3个:每个循环0.736µsec
# Second option
python3.6 -m timeit -s "list_to_sort = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}, {'name':'Faaa', 'age':57}, {'name':'Errr', 'age':20}]" -s "sorted_l=[]" -s "import operator" "list_to_sort.sort(key=operator.itemgetter('name'))"
1000000个循环,最好为3个:每个循环0.438µsec
我猜你的意思是:
[{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
其排序如下:
sorted(l,cmp=lambda x,y: cmp(x['name'],y['name']))
按多个列排序,其中一些列按降序排序:cmps数组是cmp函数的全局数组,包含字段名,对于desc,inv==-1,对于asc
def cmpfun(a, b):
for (name, inv) in cmps:
res = cmp(a[name], b[name])
if res != 0:
return res * inv
return 0
data = [
dict(name='alice', age=10),
dict(name='baruch', age=9),
dict(name='alice', age=11),
]
all_cmps = [
[('name', 1), ('age', -1)],
[('name', 1), ('age', 1)],
[('name', -1), ('age', 1)],]
print 'data:', data
for cmps in all_cmps: print 'sort:', cmps; print sorted(data, cmpfun)
使用Pandas包是另一种方法,尽管其大规模运行时比其他人提出的更传统的方法慢得多:
import pandas as pd
listOfDicts = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
df = pd.DataFrame(listOfDicts)
df = df.sort_values('name')
sorted_listOfDicts = df.T.to_dict().values()
下面是一个小列表和一个大(100k+)的字典列表的一些基准值:
setup_large = "listOfDicts = [];\
[listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10})) for _ in range(50000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"
setup_small = "listOfDicts = [];\
listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"
method1 = "newlist = sorted(listOfDicts, key=lambda k: k['name'])"
method2 = "newlist = sorted(listOfDicts, key=itemgetter('name')) "
method3 = "df = df.sort_values('name');\
sorted_listOfDicts = df.T.to_dict().values()"
import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))
t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_large)
print('Large Method Pandas: ' + str(t.timeit(1)))
#Small Method LC: 0.000163078308105
#Small Method LC2: 0.000134944915771
#Small Method Pandas: 0.0712950229645
#Large Method LC: 0.0321750640869
#Large Method LC2: 0.0206089019775
#Large Method Pandas: 5.81405615807
如果要按多个键对列表进行排序,可以执行以下操作:
my_list = [{'name':'Homer', 'age':39}, {'name':'Milhouse', 'age':10}, {'name':'Bart', 'age':10} ]
sortedlist = sorted(my_list , key=lambda elem: "%02d %s" % (elem['age'], elem['name']))
它相当粗糙,因为它依赖于将值转换为单个字符串表示形式进行比较,但对于包括负数在内的数字,它的工作方式与预期一样(尽管如果使用数字,则需要使用零填充来适当地格式化字符串)。