我试图理解多处理相对于线程的优势。我知道多处理绕过了全局解释器锁,但是还有什么其他的优势,线程不能做同样的事情吗?
线程模块使用线程,多处理模块使用进程。不同之处在于线程在相同的内存空间中运行,而进程有单独的内存。这使得在多进程之间共享对象变得有点困难。由于线程使用相同的内存,必须采取预防措施,否则两个线程将同时写入同一内存。这就是全局解释器锁的作用。
生成进程比生成线程要慢一些。
另一件没有提到的事情是,它取决于你使用的是什么操作系统。在Windows中,进程是昂贵的,所以线程在Windows中会更好,但在unix中,进程比它们的Windows变体更快,所以在unix中使用进程要安全得多,而且生成速度快。
Threading's job is to enable applications to be responsive. Suppose you have a database connection and you need to respond to user input. Without threading, if the database connection is busy the application will not be able to respond to the user. By splitting off the database connection into a separate thread you can make the application more responsive. Also because both threads are in the same process, they can access the same data structures - good performance, plus a flexible software design.
注意,由于GIL,应用程序实际上并没有同时做两件事,但我们所做的是将数据库上的资源锁放在一个单独的线程中,这样CPU时间就可以在它和用户交互之间切换。CPU时间在线程之间分配。
Multiprocessing is for times when you really do want more than one thing to be done at any given time. Suppose your application needs to connect to 6 databases and perform a complex matrix transformation on each dataset. Putting each job in a separate thread might help a little because when one connection is idle another one could get some CPU time, but the processing would not be done in parallel because the GIL means that you're only ever using the resources of one CPU. By putting each job in a Multiprocessing process, each can run on it's own CPU and run at full efficiency.
以下是我想到的一些优点和缺点。
多处理
Pros
独立的内存空间 代码通常很简单 利用多个cpu和核 避免了cPython的GIL限制 消除了对同步原语的大部分需求,除非您使用共享内存(相反,它更像是IPC的通信模型) 子进程是可中断/可杀死的 Python多处理模块包含有用的抽象,其接口类似于线程。线程 必须使用cPython进行cpu绑定处理
Cons
IPC有点复杂,开销更大(通信模型vs.共享内存/对象) 更大的内存占用
线程
Pros
轻量级——低内存占用 共享内存-使访问状态从另一个上下文更容易 允许您轻松地创建响应式ui 正确释放GIL的cPython C扩展模块将并行运行 对于I/ o约束应用程序来说是一个很好的选择
Cons
cPython -服从GIL 不是可中断/ killable 如果不遵循命令队列/消息泵模型(使用queue模块),则必须手动使用同步原语(需要对锁定的粒度进行决策) 代码通常更难理解和正确编写——竞争条件的可能性急剧增加
Other answers have focused more on the multithreading vs multiprocessing aspect, but in python Global Interpreter Lock (GIL) has to be taken into account. When more number (say k) of threads are created, generally they will not increase the performance by k times, as it will still be running as a single threaded application. GIL is a global lock which locks everything out and allows only single thread execution utilizing only a single core. The performance does increase in places where C extensions like numpy, Network, I/O are being used, where a lot of background work is done and GIL is released. So when threading is used, there is only a single operating system level thread while python creates pseudo-threads which are completely managed by threading itself but are essentially running as a single process. Preemption takes place between these pseudo threads. If the CPU runs at maximum capacity, you may want to switch to multiprocessing. Now in case of self-contained instances of execution, you can instead opt for pool. But in case of overlapping data, where you may want processes communicating you should use multiprocessing.Process.
进程可能有多个线程。这些线程可以共享内存,并且是进程中的执行单元。
进程运行在CPU上,因此线程驻留在每个进程之下。进程是独立运行的独立实体。如果您想在每个进程之间共享数据或状态,您可以使用内存存储工具,如缓存(redis, memcache),文件或数据库。
正如问题中提到的,Python中的多处理是实现真正并行的唯一方法。多线程无法实现这一点,因为GIL阻止线程并行运行。
As a consequence, threading may not always be useful in Python, and in fact, may even result in worse performance depending on what you are trying to achieve. For example, if you are performing a CPU-bound task such as decompressing gzip files or 3D-rendering (anything CPU intensive) then threading may actually hinder your performance rather than help. In such a case, you would want to use Multiprocessing as only this method actually runs in parallel and will help distribute the weight of the task at hand. There could be some overhead to this since Multiprocessing involves copying the memory of a script into each subprocess which may cause issues for larger-sized applications.
然而,当您的任务是io绑定时,多线程就变得有用了。例如,如果您的大部分任务涉及等待api调用,那么您将使用多线程,因为为什么不在等待时在另一个线程中启动另一个请求,而不是让您的CPU无所事事。
博士TL;
多线程是并发的,用于io绑定的任务 Multiprocessing实现了真正的并行,用于cpu受限的任务
Python文档引用
这个答案的规范版本现在是双重问题:线程模块和多处理模块之间有什么区别?
我已经突出显示了Python文档中关于进程vs线程和GIL的关键引用:什么是CPython中的全局解释器锁(GIL) ?
进程与线程实验
为了更具体地展示差异,我做了一些基准测试。
在基准测试中,我对8超线程CPU上不同数量的线程进行了CPU和IO限制。每个线程提供的功总是相同的,因此线程越多,提供的总功就越多。
结果如下:
图数据。
结论:
对于CPU约束的工作,多处理总是更快,可能是由于GIL IO绑定工作。两者的速度完全相同 线程只能扩展到大约4倍,而不是预期的8倍,因为我使用的是8超线程机器。 与此相比,C POSIX cpu绑定的工作达到了预期的8倍加速:'real', 'user'和'sys'在time(1)的输出中是什么意思? 我不知道这是什么原因,肯定有其他Python的低效率因素在起作用。
测试代码:
#!/usr/bin/env python3
import multiprocessing
import threading
import time
import sys
def cpu_func(result, niters):
'''
A useless CPU bound function.
'''
for i in range(niters):
result = (result * result * i + 2 * result * i * i + 3) % 10000000
return result
class CpuThread(threading.Thread):
def __init__(self, niters):
super().__init__()
self.niters = niters
self.result = 1
def run(self):
self.result = cpu_func(self.result, self.niters)
class CpuProcess(multiprocessing.Process):
def __init__(self, niters):
super().__init__()
self.niters = niters
self.result = 1
def run(self):
self.result = cpu_func(self.result, self.niters)
class IoThread(threading.Thread):
def __init__(self, sleep):
super().__init__()
self.sleep = sleep
self.result = self.sleep
def run(self):
time.sleep(self.sleep)
class IoProcess(multiprocessing.Process):
def __init__(self, sleep):
super().__init__()
self.sleep = sleep
self.result = self.sleep
def run(self):
time.sleep(self.sleep)
if __name__ == '__main__':
cpu_n_iters = int(sys.argv[1])
sleep = 1
cpu_count = multiprocessing.cpu_count()
input_params = [
(CpuThread, cpu_n_iters),
(CpuProcess, cpu_n_iters),
(IoThread, sleep),
(IoProcess, sleep),
]
header = ['nthreads']
for thread_class, _ in input_params:
header.append(thread_class.__name__)
print(' '.join(header))
for nthreads in range(1, 2 * cpu_count):
results = [nthreads]
for thread_class, work_size in input_params:
start_time = time.time()
threads = []
for i in range(nthreads):
thread = thread_class(work_size)
threads.append(thread)
thread.start()
for i, thread in enumerate(threads):
thread.join()
results.append(time.time() - start_time)
print(' '.join('{:.6e}'.format(result) for result in results))
相同目录上的GitHub上游+绘图代码。
在Ubuntu 18.10, Python 3.6.7,联想ThinkPad P51笔记本电脑上测试,CPU:英特尔酷睿i7-7820HQ CPU(4核/ 8线程),RAM: 2倍三星M471A2K43BB1-CRC(2倍16GiB), SSD:三星MZVLB512HAJQ-000L7 (3000 MB/s)。
可视化给定时间哪些线程正在运行
这篇文章https://rohanvarma.me/GIL/告诉我,你可以运行一个回调每当线程调度与目标=参数的线程。线程和multiprocessing.Process。
这允许我们准确地查看每次运行的线程。当这完成后,我们会看到(我制作了这张特殊的图表):
+--------------------------------------+
+ Active threads / processes +
+-----------+--------------------------------------+
|Thread 1 |******** ************ |
| 2 | ***** *************|
+-----------+--------------------------------------+
|Process 1 |*** ************** ****** **** |
| 2 |** **** ****** ** ********* **********|
+-----------+--------------------------------------+
+ Time --> +
+--------------------------------------+
这将表明:
线程由GIL完全序列化 进程可以并行运行
多处理
Multiprocessing通过增加cpu来提高计算能力。 多个进程同时执行。 创建流程既耗时又耗费资源。 多处理可以是对称的也可以是非对称的。
Python中的多处理库使用独立的内存空间,多个CPU核心,绕过CPython中的GIL限制,子进程是可杀死的(例如程序中的函数调用),并且更容易使用。 该模块的一些注意事项是内存占用较大,IPC稍微复杂一些,开销更大。
多线程
多线程创建单个进程的多个线程,以提高计算能力。 一个进程的多个线程并发执行。 线程的创建在时间和资源上都是经济的。
多线程库是轻量级的,共享内存,负责响应式UI,并用于I/O绑定应用程序。 该模块不可杀死,并受GIL约束。 多个线程生活在同一个进程中的同一个空间中,每个线程将执行特定的任务,有自己的代码,自己的堆栈内存,指令指针,并共享堆内存。 如果一个线程有内存泄漏,它会损害其他线程和父进程。
使用Python的多线程和多处理示例
Python 3有启动并行任务的功能。这使我们的工作更容易。
它有线程池和进程池。
下面让我们来了解一下:
ThreadPoolExecutor例子
import concurrent.futures
import urllib.request
URLS = ['http://www.foxnews.com/',
'http://www.cnn.com/',
'http://europe.wsj.com/',
'http://www.bbc.co.uk/',
'http://some-made-up-domain.com/']
# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
ProcessPoolExecutor
import concurrent.futures
import math
PRIMES = [
112272535095293,
112582705942171,
112272535095293,
115280095190773,
115797848077099,
1099726899285419]
def is_prime(n):
if n % 2 == 0:
return False
sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):
if n % i == 0:
return False
return True
def main():
with concurrent.futures.ProcessPoolExecutor() as executor:
for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
print('%d is prime: %s' % (number, prime))
if __name__ == '__main__':
main()
As I learnd in university most of the answers above are right. In PRACTISE on different platforms (always using python) spawning multiple threads ends up like spawning one process. The difference is the multiple cores share the load instead of only 1 core processing everything at 100%. So if you spawn for example 10 threads on a 4 core pc, you will end up getting only the 25% of the cpus power!! And if u spawn 10 processes u will end up with the cpu processing at 100% (if u dont have other limitations). Im not a expert in all the new technologies. Im answering with own real experience background
线程共享相同的内存空间,以确保两个线程不共享相同的内存位置,因此必须采取特殊的预防措施。CPython解释器使用一种称为GIL的机制来处理这个问题,或全局解释器锁
什么是GIL(我只是想澄清GIL,上面重复了一次)?
在CPython中,全局解释器锁(GIL)是一个互斥锁,用于保护对Python对象的访问,防止多个线程同时执行Python字节码。这个锁是必要的,主要是因为CPython的内存管理不是线程安全的。
对于主要问题,我们可以使用用例,如何进行比较?
1-线程的用例:在GUI程序中,线程可以用来使应用程序具有响应性。例如,在文本编辑程序中,一个线程可以负责记录用户输入,另一个线程可以负责显示文本,第三个线程可以进行拼写检查,等等。在这里,程序必须等待用户交互。这是最大的瓶颈。线程的另一个用例是受IO限制或受网络限制的程序,例如web scraper。
2- Multiprocessing的用例:当程序是CPU密集型的,并且不需要做任何IO或用户交互的情况下,Multiprocessing优于线程。
要了解更多详细信息,请访问此链接和链接,或者您需要深入了解线程访问这里,多处理访问这里
推荐文章
- 当你的应用程序有一个tests目录时,在Django中运行一个特定的测试用例
- 如何合并一个透明的png图像与另一个图像使用PIL
- 使用散射数据集生成热图
- python:将脚本工作目录更改为脚本自己的目录
- 如何以编程方式获取python.exe位置?
- 如何跳过循环中的迭代?
- 使用Pandas为字符串列中的每个值添加字符串前缀
- ImportError:没有名为matplotlib.pyplot的模块
- 在python中遍历对象属性
- 如何在Python中使用方法重载?
- 在Python中提取文件路径(目录)的一部分
- 如何安装没有根访问权限的python模块?
- 尝试模拟datetime.date.today(),但不工作
- 将行添加到数组
- 如何在Python中直接获得字典键作为变量(而不是通过从值搜索)?