我试图理解多处理相对于线程的优势。我知道多处理绕过了全局解释器锁,但是还有什么其他的优势,线程不能做同样的事情吗?
当前回答
Threading's job is to enable applications to be responsive. Suppose you have a database connection and you need to respond to user input. Without threading, if the database connection is busy the application will not be able to respond to the user. By splitting off the database connection into a separate thread you can make the application more responsive. Also because both threads are in the same process, they can access the same data structures - good performance, plus a flexible software design.
注意,由于GIL,应用程序实际上并没有同时做两件事,但我们所做的是将数据库上的资源锁放在一个单独的线程中,这样CPU时间就可以在它和用户交互之间切换。CPU时间在线程之间分配。
Multiprocessing is for times when you really do want more than one thing to be done at any given time. Suppose your application needs to connect to 6 databases and perform a complex matrix transformation on each dataset. Putting each job in a separate thread might help a little because when one connection is idle another one could get some CPU time, but the processing would not be done in parallel because the GIL means that you're only ever using the resources of one CPU. By putting each job in a Multiprocessing process, each can run on it's own CPU and run at full efficiency.
其他回答
关键的优势是隔离。进程崩溃不会导致其他进程崩溃,而线程崩溃可能会对其他线程造成严重破坏。
线程模块使用线程,多处理模块使用进程。不同之处在于线程在相同的内存空间中运行,而进程有单独的内存。这使得在多进程之间共享对象变得有点困难。由于线程使用相同的内存,必须采取预防措施,否则两个线程将同时写入同一内存。这就是全局解释器锁的作用。
生成进程比生成线程要慢一些。
Other answers have focused more on the multithreading vs multiprocessing aspect, but in python Global Interpreter Lock (GIL) has to be taken into account. When more number (say k) of threads are created, generally they will not increase the performance by k times, as it will still be running as a single threaded application. GIL is a global lock which locks everything out and allows only single thread execution utilizing only a single core. The performance does increase in places where C extensions like numpy, Network, I/O are being used, where a lot of background work is done and GIL is released. So when threading is used, there is only a single operating system level thread while python creates pseudo-threads which are completely managed by threading itself but are essentially running as a single process. Preemption takes place between these pseudo threads. If the CPU runs at maximum capacity, you may want to switch to multiprocessing. Now in case of self-contained instances of execution, you can instead opt for pool. But in case of overlapping data, where you may want processes communicating you should use multiprocessing.Process.
多处理
Multiprocessing通过增加cpu来提高计算能力。 多个进程同时执行。 创建流程既耗时又耗费资源。 多处理可以是对称的也可以是非对称的。
Python中的多处理库使用独立的内存空间,多个CPU核心,绕过CPython中的GIL限制,子进程是可杀死的(例如程序中的函数调用),并且更容易使用。 该模块的一些注意事项是内存占用较大,IPC稍微复杂一些,开销更大。
多线程
多线程创建单个进程的多个线程,以提高计算能力。 一个进程的多个线程并发执行。 线程的创建在时间和资源上都是经济的。
多线程库是轻量级的,共享内存,负责响应式UI,并用于I/O绑定应用程序。 该模块不可杀死,并受GIL约束。 多个线程生活在同一个进程中的同一个空间中,每个线程将执行特定的任务,有自己的代码,自己的堆栈内存,指令指针,并共享堆内存。 如果一个线程有内存泄漏,它会损害其他线程和父进程。
使用Python的多线程和多处理示例
Python 3有启动并行任务的功能。这使我们的工作更容易。
它有线程池和进程池。
下面让我们来了解一下:
ThreadPoolExecutor例子
import concurrent.futures
import urllib.request
URLS = ['http://www.foxnews.com/',
'http://www.cnn.com/',
'http://europe.wsj.com/',
'http://www.bbc.co.uk/',
'http://some-made-up-domain.com/']
# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
ProcessPoolExecutor
import concurrent.futures
import math
PRIMES = [
112272535095293,
112582705942171,
112272535095293,
115280095190773,
115797848077099,
1099726899285419]
def is_prime(n):
if n % 2 == 0:
return False
sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):
if n % i == 0:
return False
return True
def main():
with concurrent.futures.ProcessPoolExecutor() as executor:
for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
print('%d is prime: %s' % (number, prime))
if __name__ == '__main__':
main()
正如问题中提到的,Python中的多处理是实现真正并行的唯一方法。多线程无法实现这一点,因为GIL阻止线程并行运行。
As a consequence, threading may not always be useful in Python, and in fact, may even result in worse performance depending on what you are trying to achieve. For example, if you are performing a CPU-bound task such as decompressing gzip files or 3D-rendering (anything CPU intensive) then threading may actually hinder your performance rather than help. In such a case, you would want to use Multiprocessing as only this method actually runs in parallel and will help distribute the weight of the task at hand. There could be some overhead to this since Multiprocessing involves copying the memory of a script into each subprocess which may cause issues for larger-sized applications.
然而,当您的任务是io绑定时,多线程就变得有用了。例如,如果您的大部分任务涉及等待api调用,那么您将使用多线程,因为为什么不在等待时在另一个线程中启动另一个请求,而不是让您的CPU无所事事。
博士TL;
多线程是并发的,用于io绑定的任务 Multiprocessing实现了真正的并行,用于cpu受限的任务
推荐文章
- 当你的应用程序有一个tests目录时,在Django中运行一个特定的测试用例
- 如何合并一个透明的png图像与另一个图像使用PIL
- 使用散射数据集生成热图
- python:将脚本工作目录更改为脚本自己的目录
- 如何以编程方式获取python.exe位置?
- 如何跳过循环中的迭代?
- 使用Pandas为字符串列中的每个值添加字符串前缀
- ImportError:没有名为matplotlib.pyplot的模块
- 在python中遍历对象属性
- 如何在Python中使用方法重载?
- 在Python中提取文件路径(目录)的一部分
- 如何安装没有根访问权限的python模块?
- 尝试模拟datetime.date.today(),但不工作
- 将行添加到数组
- 如何在Python中直接获得字典键作为变量(而不是通过从值搜索)?