我试图理解多处理相对于线程的优势。我知道多处理绕过了全局解释器锁,但是还有什么其他的优势,线程不能做同样的事情吗?
当前回答
进程可能有多个线程。这些线程可以共享内存,并且是进程中的执行单元。
进程运行在CPU上,因此线程驻留在每个进程之下。进程是独立运行的独立实体。如果您想在每个进程之间共享数据或状态,您可以使用内存存储工具,如缓存(redis, memcache),文件或数据库。
其他回答
进程可能有多个线程。这些线程可以共享内存,并且是进程中的执行单元。
进程运行在CPU上,因此线程驻留在每个进程之下。进程是独立运行的独立实体。如果您想在每个进程之间共享数据或状态,您可以使用内存存储工具,如缓存(redis, memcache),文件或数据库。
关键的优势是隔离。进程崩溃不会导致其他进程崩溃,而线程崩溃可能会对其他线程造成严重破坏。
Python文档引用
这个答案的规范版本现在是双重问题:线程模块和多处理模块之间有什么区别?
我已经突出显示了Python文档中关于进程vs线程和GIL的关键引用:什么是CPython中的全局解释器锁(GIL) ?
进程与线程实验
为了更具体地展示差异,我做了一些基准测试。
在基准测试中,我对8超线程CPU上不同数量的线程进行了CPU和IO限制。每个线程提供的功总是相同的,因此线程越多,提供的总功就越多。
结果如下:
图数据。
结论:
对于CPU约束的工作,多处理总是更快,可能是由于GIL IO绑定工作。两者的速度完全相同 线程只能扩展到大约4倍,而不是预期的8倍,因为我使用的是8超线程机器。 与此相比,C POSIX cpu绑定的工作达到了预期的8倍加速:'real', 'user'和'sys'在time(1)的输出中是什么意思? 我不知道这是什么原因,肯定有其他Python的低效率因素在起作用。
测试代码:
#!/usr/bin/env python3
import multiprocessing
import threading
import time
import sys
def cpu_func(result, niters):
'''
A useless CPU bound function.
'''
for i in range(niters):
result = (result * result * i + 2 * result * i * i + 3) % 10000000
return result
class CpuThread(threading.Thread):
def __init__(self, niters):
super().__init__()
self.niters = niters
self.result = 1
def run(self):
self.result = cpu_func(self.result, self.niters)
class CpuProcess(multiprocessing.Process):
def __init__(self, niters):
super().__init__()
self.niters = niters
self.result = 1
def run(self):
self.result = cpu_func(self.result, self.niters)
class IoThread(threading.Thread):
def __init__(self, sleep):
super().__init__()
self.sleep = sleep
self.result = self.sleep
def run(self):
time.sleep(self.sleep)
class IoProcess(multiprocessing.Process):
def __init__(self, sleep):
super().__init__()
self.sleep = sleep
self.result = self.sleep
def run(self):
time.sleep(self.sleep)
if __name__ == '__main__':
cpu_n_iters = int(sys.argv[1])
sleep = 1
cpu_count = multiprocessing.cpu_count()
input_params = [
(CpuThread, cpu_n_iters),
(CpuProcess, cpu_n_iters),
(IoThread, sleep),
(IoProcess, sleep),
]
header = ['nthreads']
for thread_class, _ in input_params:
header.append(thread_class.__name__)
print(' '.join(header))
for nthreads in range(1, 2 * cpu_count):
results = [nthreads]
for thread_class, work_size in input_params:
start_time = time.time()
threads = []
for i in range(nthreads):
thread = thread_class(work_size)
threads.append(thread)
thread.start()
for i, thread in enumerate(threads):
thread.join()
results.append(time.time() - start_time)
print(' '.join('{:.6e}'.format(result) for result in results))
相同目录上的GitHub上游+绘图代码。
在Ubuntu 18.10, Python 3.6.7,联想ThinkPad P51笔记本电脑上测试,CPU:英特尔酷睿i7-7820HQ CPU(4核/ 8线程),RAM: 2倍三星M471A2K43BB1-CRC(2倍16GiB), SSD:三星MZVLB512HAJQ-000L7 (3000 MB/s)。
可视化给定时间哪些线程正在运行
这篇文章https://rohanvarma.me/GIL/告诉我,你可以运行一个回调每当线程调度与目标=参数的线程。线程和multiprocessing.Process。
这允许我们准确地查看每次运行的线程。当这完成后,我们会看到(我制作了这张特殊的图表):
+--------------------------------------+
+ Active threads / processes +
+-----------+--------------------------------------+
|Thread 1 |******** ************ |
| 2 | ***** *************|
+-----------+--------------------------------------+
|Process 1 |*** ************** ****** **** |
| 2 |** **** ****** ** ********* **********|
+-----------+--------------------------------------+
+ Time --> +
+--------------------------------------+
这将表明:
线程由GIL完全序列化 进程可以并行运行
线程模块使用线程,多处理模块使用进程。不同之处在于线程在相同的内存空间中运行,而进程有单独的内存。这使得在多进程之间共享对象变得有点困难。由于线程使用相同的内存,必须采取预防措施,否则两个线程将同时写入同一内存。这就是全局解释器锁的作用。
生成进程比生成线程要慢一些。
Other answers have focused more on the multithreading vs multiprocessing aspect, but in python Global Interpreter Lock (GIL) has to be taken into account. When more number (say k) of threads are created, generally they will not increase the performance by k times, as it will still be running as a single threaded application. GIL is a global lock which locks everything out and allows only single thread execution utilizing only a single core. The performance does increase in places where C extensions like numpy, Network, I/O are being used, where a lot of background work is done and GIL is released. So when threading is used, there is only a single operating system level thread while python creates pseudo-threads which are completely managed by threading itself but are essentially running as a single process. Preemption takes place between these pseudo threads. If the CPU runs at maximum capacity, you may want to switch to multiprocessing. Now in case of self-contained instances of execution, you can instead opt for pool. But in case of overlapping data, where you may want processes communicating you should use multiprocessing.Process.
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录
- 熊猫数据帧得到每组的第一行