并行编程和并行编程的区别是什么?我问了谷歌,但没有找到任何帮助我理解这种区别的东西。你能给我举个例子吗?
现在我找到了这个解释:http://www.linux-mag.com/id/7411 -但是“并发性是程序的属性”vs“并行执行是机器的属性”对我来说还不够-我仍然不能说什么是什么。
并行编程和并行编程的区别是什么?我问了谷歌,但没有找到任何帮助我理解这种区别的东西。你能给我举个例子吗?
现在我找到了这个解释:http://www.linux-mag.com/id/7411 -但是“并发性是程序的属性”vs“并行执行是机器的属性”对我来说还不够-我仍然不能说什么是什么。
当前回答
只是分享一个有助于突出区别的例子:
并行编程:假设您想实现归并排序算法。每次将问题划分为两个子问题时,可以有两个线程来解决它们。然而,为了进行合并步骤,您必须等待这两个线程完成,因为合并需要两个子解决方案。这种“强制等待”使其成为并行程序。
并发程序:假设你想压缩n个文本文件,并为每个文件生成一个压缩文件。您可以有2个(最多n个)线程,每个线程处理压缩文件的一个子集。当每个线程完成时,它就完成了,它不需要等待或做任何其他事情。因此,由于不同的任务以“任意顺序”交错的方式执行,所以程序是并发的,而不是并行的。
正如其他人提到的,每个并行程序都是并发的(事实上必须是),而不是相反。
其他回答
从处理器的角度来看,它可以用这张图片来描述
从处理器的角度来看,它可以用这张图片来描述
Concurrent programming regards operations that appear to overlap and is primarily concerned with the complexity that arises due to non-deterministic control flow. The quantitative costs associated with concurrent programs are typically both throughput and latency. Concurrent programs are often IO bound but not always, e.g. concurrent garbage collectors are entirely on-CPU. The pedagogical example of a concurrent program is a web crawler. This program initiates requests for web pages and accepts the responses concurrently as the results of the downloads become available, accumulating a set of pages that have already been visited. Control flow is non-deterministic because the responses are not necessarily received in the same order each time the program is run. This characteristic can make it very hard to debug concurrent programs. Some applications are fundamentally concurrent, e.g. web servers must handle client connections concurrently. Erlang, F# asynchronous workflows and Scala's Akka library are perhaps the most promising approaches to highly concurrent programming.
Multicore programming is a special case of parallel programming. Parallel programming concerns operations that are overlapped for the specific goal of improving throughput. The difficulties of concurrent programming are evaded by making control flow deterministic. Typically, programs spawn sets of child tasks that run in parallel and the parent task only continues once every subtask has finished. This makes parallel programs much easier to debug than concurrent programs. The hard part of parallel programming is performance optimization with respect to issues such as granularity and communication. The latter is still an issue in the context of multicores because there is a considerable cost associated with transferring data from one cache to another. Dense matrix-matrix multiply is a pedagogical example of parallel programming and it can be solved efficiently by using Straasen's divide-and-conquer algorithm and attacking the sub-problems in parallel. Cilk is perhaps the most promising approach for high-performance parallel programming on multicores and it has been adopted in both Intel's Threaded Building Blocks and Microsoft's Task Parallel Library (in .NET 4).
我会试着用我自己的方式来解释它,它可能不是计算机术语,但它能给你一个大概的概念。
让我们以家务为例:洗碗,倒垃圾,修剪草坪等,我们有三个人(线程)A, B, C来做这些事情
并发: 三个人独立地开始不同的任务,例如,
A --> cleaning dishes
B --> taking out trash
C --> mowing the lawn
在这里,任务的顺序是不确定的,响应取决于工作量
并行: 在这里,如果我们想要提高吞吐量,我们可以分配多个人来完成一项任务,例如,清洁盘子,我们分配两个人,A擦洗盘子,B洗盘子,这可能会提高吞吐量。
洗碗:
A --> soaping the dishes
B --> washing the dishes
等等
希望这能给你一些启发!现在转到其他答案中解释的技术术语;)
我认为并发编程指的是多线程编程,它是关于让你的程序运行多个线程,从硬件细节中抽象出来。
并行编程是指专门设计程序算法以利用可用的并行执行。例如,您可以并行执行某些算法的两个分支,期望它会比先检查第一个分支再检查第二个分支更快地到达结果(平均而言)。
并发性和并行性源
在单个处理器上的多线程进程中,处理器可以在线程之间切换执行资源,从而实现并发执行。
在共享内存多处理器环境中的同一个多线程进程中,进程中的每个线程可以同时在单独的处理器上运行,从而导致并行执行。
当进程的线程数量与处理器数量相同或较少时,线程支持系统结合操作环境确保每个线程运行在不同的处理器上。
例如,在具有相同数量的线程和处理器的矩阵乘法中,每个线程(和每个处理器)计算结果的一行。