并行编程和并行编程的区别是什么?我问了谷歌,但没有找到任何帮助我理解这种区别的东西。你能给我举个例子吗?
现在我找到了这个解释:http://www.linux-mag.com/id/7411 -但是“并发性是程序的属性”vs“并行执行是机器的属性”对我来说还不够-我仍然不能说什么是什么。
并行编程和并行编程的区别是什么?我问了谷歌,但没有找到任何帮助我理解这种区别的东西。你能给我举个例子吗?
现在我找到了这个解释:http://www.linux-mag.com/id/7411 -但是“并发性是程序的属性”vs“并行执行是机器的属性”对我来说还不够-我仍然不能说什么是什么。
当前回答
并发编程是一个通用概念,即一个程序可以以未定义的完成顺序执行多个任务,并且这些任务可以同时执行,也可以不同时执行。
并行编程只是一种并发编程,其中这些任务运行在同时执行的线程上。
我真的不理解这里许多过于冗长的回答,这些回答似乎暗示并行编程和并行编程是不同的编程方法,它们并不重叠。
如果你在写一个并行程序,根据定义,你是在写一个并发程序的特殊情况。这些年来,术语似乎被不必要地混淆和复杂化了。
关于并发编程最好、最详细的报道之一是Joe Duffy所著的《Windows上的并发编程》一书。这本书定义了并发,然后继续解释各种操作系统资源,库等可用来编写“并行”程序,如。net中的任务并行库。
第5页:
并行性是使用并发性将操作分解为 粒度更细的组成部分,以便独立的部分可以运行 机器上的独立处理器"
同样,并行编程只是一种特殊类型的并发编程,其中多个线程/任务将同时运行。
PS 我一直不喜欢在编程中,并发和并行这两个词有如此多的含义。例:在编程之外的广阔世界里,“篮球比赛将并行进行”和“篮球比赛将并行进行”是完全相同的。
想象一下,在开发者大会上,他们在第一天宣传会议将“并行”运行,但第二天他们将“并发”运行,这是多么可笑的困惑。那会很搞笑的!
其他回答
不同的人在许多不同的具体情况下讨论不同类型的并发性和并行性,因此需要一些抽象来涵盖它们的共同性质。
The basic abstraction is done in computer science, where both concurrency and parallelism are attributed to the properties of programs. Here, programs are formalized descriptions of computing. Such programs need not to be in any particular language or encoding, which is implementation-specific. The existence of API/ABI/ISA/OS is irrelevant to such level of abstraction. Surely one will need more detailed implementation-specific knowledge (like threading model) to do concrete programming works, the spirit behind the basic abstraction is not changed.
第二个重要的事实是,作为一般属性,并发性和并行性可以在许多不同的抽象中共存。
关于一般的区别,请参阅并发和并行的基本观点的相关答案。(还有一些链接包含一些其他来源。)
并发编程和并行编程是用一些系统实现这些一般属性的技术,这些系统公开了可编程性。系统通常是编程语言及其实现。
A programming language may expose the intended properties by built-in semantic rules. In most cases, such rules specify the evaluations of specific language structures (e.g. expressions) making the computation involved effectively concurrent or parallel. (More specifically, the computational effects implied by the evaluations can perfectly reflect these properties.) However, concurrent/parallel language semantics are essentially complex and they are not necessary to practical works (to implement efficient concurrent/parallel algorithms as the solutions of realistic problems). So, most traditional languages take a more conservative and simpler approach: assuming the semantics of evaluation totally sequential and serial, then providing optional primitives to allow some of the computations being concurrent and parallel. These primitives can be keywords or procedural constructs ("functions") supported by the language. They are implemented based on the interaction with hosted environments (OS, or "bare metal" hardware interface), usually opaque (not able to be derived using the language portably) to the language. Thus, in this particular kind of high-level abstractions seen by the programmers, nothing is concurrent/parallel besides these "magic" primitives and programs relying on these primitives; the programmers can then enjoy less error-prone experience of programming when concurrency/parallelism properties are not so interested.
Although primitives abstract the complex away in the most high-level abstractions, the implementations still have the extra complexity not exposed by the language feature. So, some mid-level abstractions are needed. One typical example is threading. Threading allows one or more thread of execution (or simply thread; sometimes it is also called a process, which is not necessarily the concept of a task scheduled in an OS) supported by the language implementation (the runtime). Threads are usually preemptively scheduled by the runtime, so a thread needs to know nothing about other threads. Thus, threads are natural to implement parallelism as long as they share nothing (the critical resources): just decompose computations in different threads, once the underlying implementation allows the overlapping of the computation resources during the execution, it works. Threads are also subject to concurrent accesses of shared resources: just access resources in any order meets the minimal constraints required by the algorithm, and the implementation will eventually determine when to access. In such cases, some synchronization operations may be necessary. Some languages treat threading and synchronization operations as parts of the high-level abstraction and expose them as primitives, while some other languages encourage only relatively more high-level primitives (like futures/promises) instead.
Under the level of language-specific threads, there come multitasking of the underlying hosting environment (typically, an OS). OS-level preemptive multitasking are used to implement (preemptive) multithreading. In some environments like Windows NT, the basic scheduling units (the tasks) are also "threads". To differentiate them with userspace implementation of threads mentioned above, they are called kernel threads, where "kernel" means the kernel of the OS (however, strictly speaking, this is not quite true for Windows NT; the "real" kernel is the NT executive). Kernel threads are not always 1:1 mapped to the userspace threads, although 1:1 mapping often reduces most overhead of mapping. Since kernel threads are heavyweight (involving system calls) to create/destroy/communicate, there are non 1:1 green threads in the userspace to overcome the overhead problems at the cost of the mapping overhead. The choice of mapping depending on the programming paradigm expected in the high-level abstraction. For example, when a huge number of userspace threads expected being concurrently executed (like Erlang), 1:1 mapping is never feasible.
The underlying of OS multitasking is ISA-level multitasking provided by the logical core of the processor. This is usually the most low-level public interface for programmers. Beneath this level, there may exist SMT. This is a form of more low-level multithreading implemented by the hardware, but arguably, still somewhat programmable - though it is usually only accessible by the processor manufacturer. Note the hardware design is apparently reflecting parallelism, but there is also concurrent scheduling mechanism to make the internal hardware resources being efficiently used.
在上面提到的每一层“线程”中,都涉及并发性和并行性。尽管编程接口变化很大,但它们都服从于一开始基本抽象所揭示的属性。
在编程中,并发是独立的组合 执行进程,而并行是同时执行 计算的(可能相关的)。 -安德鲁·格兰德
And
Concurrency is the composition of independently executing computations. Concurrency is a way to structure software, particularly as a way to write clean code that interacts well with the real world. It is not parallelism. Concurrency is not parallelism, although it enables parallelism. If you have only one processor, your program can still be concurrent but it cannot be parallel. On the other hand, a well-written concurrent program might run efficiently in parallel on a multiprocessor. That property could be important... - Rob Pike -
为了理解其中的区别,我强烈建议你去看看Rob Pike(Golang的创作者之一)的视频。并发不是并行
虽然没有完整 对并行和并发这两个术语的区别达成一致, 许多作者做了以下区分:
在并发计算中,一个程序可以在任意时刻执行多个任务。 在并行计算中,一个程序是多个任务紧密合作的程序 解决一个问题。
所以并行程序是并发的,但是像多任务操作系统这样的程序也是并发的,即使它运行在一台带有 只有一个核心,因为多个任务可以在任何时刻进行。
来源:Peter Pacheco的《并行编程介绍》
并行编程发生在代码同时被执行并且每次执行都是相互独立的时候。因此,通常不会有关于共享变量之类的关注,因为那不太可能发生。
However, concurrent programming consists on code being executed by different processes/threads that share variables and such, therefore on concurrent programming we must establish some sort of rule to decide which process/thread executes first, we want this so that we can be sure there will be consistency and that we can know with certainty what will happen. If there is no control and all threads compute at the same time and store things on the same variables, how would we know what to expect in the end? Maybe a thread is faster than the other, maybe one of the threads even stopped in the middle of its execution and another continued a different computation with a corrupted (not yet fully computed) variable, the possibilities are endless. It's in these situations that we usually use concurrent programming instead of parallel.
将原始问题解释为并行/并发计算,而不是编程。
在并发计算中,两个计算都是彼此独立前进的。第二个计算不需要等到第一个计算完成后才能继续进行。但是,它并没有说明这是如何实现的机制。在单核设置中,线程之间需要挂起和交替(也称为抢占式多线程)。
在并行计算中,两个计算同时进行——字面上是同时进行。这对于单CPU来说是不可能的,而是需要多核设置。
图片来自文章:“Node.js中的并行vs并发”
与