我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

不,LabelEncoder不这样做。它接受类标签的1维数组并生成1维数组。它的设计目的是处理分类问题中的类标签,而不是任意数据,任何强迫它用于其他用途的尝试都需要代码将实际问题转换为它解决的问题(并将解决方案转换回原始空间)。

其他回答

假设你只是想获得一个sklearn.预处理. labelencoder()对象,可以用来表示你的列,你所要做的就是:

le.fit(df.columns)

在上面的代码中,每一列都有一个唯一的数字。 更精确地说,你将得到df的1:1映射。列到le.transform(df.columns.get_values())。要获得列的编码,只需将其传递给le.transform(…)。作为一个例子,下面将得到每一列的编码:

le.transform(df.columns.get_values())

假设你想为你所有的行标签创建一个sklearn.预处理. labelencoder()对象,你可以这样做:

le.fit([y for x in df.get_values() for y in x])

在本例中,您很可能拥有非唯一的行标签(如您的问题所示)。要查看编码器创建了哪些类,可以执行le.classes_。你会注意到,这应该具有与set中相同的元素(y for x in df.get_values() for y in x)。再次使用le.transform(…)将行标签转换为编码标签。例如,如果您想检索df. xml文件中第一列的标签。列数组和第一行,你可以这样做:

le.transform([df.get_value(0, df.columns[0])])

你在评论中提出的问题有点复杂,但仍然可以 完成:

le.fit([str(z) for z in set((x[0], y) for x in df.iteritems() for y in x[1])])

上面的代码实现了以下功能:

使所有(列,行)对的唯一组合 将每个对表示为元组的字符串版本。这是克服LabelEncoder类不支持元组作为类名的一种变通方法。 将新项目贴合到LabelEncoder。

现在要使用这个新模型就有点复杂了。假设我们想要提取在前一个例子中查找的同一项的表示(df中的第一列)。列和第一行),我们可以这样做:

le.transform([str((df.columns[0], df.get_value(0, df.columns[0])))])

记住,现在每个查找都是一个元组的字符串表示 包含(列、行)。

你可以很容易地做到,

df.apply(LabelEncoder().fit_transform)

EDIT2:

在scikit-learn 0.20中,推荐的方法是

OneHotEncoder().fit_transform(df)

因为OneHotEncoder现在支持字符串输入。 使用ColumnTransformer可以只对某些列应用OneHotEncoder。

编辑:

由于这个最初的答案是一年多前的,并获得了许多赞(包括赏金),我可能应该进一步扩展它。

对于inverse_transform和transform,你需要做一点修改。

from collections import defaultdict
d = defaultdict(LabelEncoder)

这样,您现在将所有列LabelEncoder保留为字典。

# Encoding the variable
fit = df.apply(lambda x: d[x.name].fit_transform(x))

# Inverse the encoded
fit.apply(lambda x: d[x.name].inverse_transform(x))

# Using the dictionary to label future data
df.apply(lambda x: d[x.name].transform(x))

MOAR编辑:

使用Neuraxle的flatforeach步骤,也可以在一次对所有平坦数据使用相同的LabelEncoder:

FlattenForEach(LabelEncoder(), then_unflatten=True).fit_transform(df)

要根据数据列使用单独的LabelEncoders,或者如果只有一些数据列需要进行标签编码,而不需要其他数据列,那么使用ColumnTransformer是一种解决方案,它允许对列选择和LabelEncoder实例进行更多控制。

问题是传递给fit函数的数据(pd dataframe)的形状。 你必须通过1d列表。

如果我们有单列来做标签编码和它的逆变换,当python中有多列时,很容易做到这一点

def stringtocategory(dataset):
    '''
    @author puja.sharma
    @see The function label encodes the object type columns and gives label      encoded and inverse tranform of the label encoded data
    @param dataset dataframe on whoes column the label encoding has to be done
    @return label encoded and inverse tranform of the label encoded data.
   ''' 
   data_original = dataset[:]
   data_tranformed = dataset[:]
   for y in dataset.columns:
       #check the dtype of the column object type contains strings or chars
       if (dataset[y].dtype == object):
          print("The string type features are  : " + y)
          le = preprocessing.LabelEncoder()
          le.fit(dataset[y].unique())
          #label encoded data
          data_tranformed[y] = le.transform(dataset[y])
          #inverse label transform  data
          data_original[y] = le.inverse_transform(data_tranformed[y])
   return data_tranformed,data_original

不,LabelEncoder不这样做。它接受类标签的1维数组并生成1维数组。它的设计目的是处理分类问题中的类标签,而不是任意数据,任何强迫它用于其他用途的尝试都需要代码将实际问题转换为它解决的问题(并将解决方案转换回原始空间)。