我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

不,LabelEncoder不这样做。它接受类标签的1维数组并生成1维数组。它的设计目的是处理分类问题中的类标签,而不是任意数据,任何强迫它用于其他用途的尝试都需要代码将实际问题转换为它解决的问题(并将解决方案转换回原始空间)。

其他回答

如果你在数据框架中有数值和类别两种类型的数据 你可以使用:这里X是我的数据框架,有分类变量和数值变量

from sklearn import preprocessing
le = preprocessing.LabelEncoder()

for i in range(0,X.shape[1]):
    if X.dtypes[i]=='object':
        X[X.columns[i]] = le.fit_transform(X[X.columns[i]])

注意:如果你对转换它们不感兴趣,这个技巧是很好的。

根据对@PriceHardman解决方案提出的意见,我将提出以下版本的类:

class LabelEncodingColoumns(BaseEstimator, TransformerMixin):
def __init__(self, cols=None):
    pdu._is_cols_input_valid(cols)
    self.cols = cols
    self.les = {col: LabelEncoder() for col in cols}
    self._is_fitted = False

def transform(self, df, **transform_params):
    """
    Scaling ``cols`` of ``df`` using the fitting

    Parameters
    ----------
    df : DataFrame
        DataFrame to be preprocessed
    """
    if not self._is_fitted:
        raise NotFittedError("Fitting was not preformed")
    pdu._is_cols_subset_of_df_cols(self.cols, df)

    df = df.copy()

    label_enc_dict = {}
    for col in self.cols:
        label_enc_dict[col] = self.les[col].transform(df[col])

    labelenc_cols = pd.DataFrame(label_enc_dict,
        # The index of the resulting DataFrame should be assigned and
        # equal to the one of the original DataFrame. Otherwise, upon
        # concatenation NaNs will be introduced.
        index=df.index
    )

    for col in self.cols:
        df[col] = labelenc_cols[col]
    return df

def fit(self, df, y=None, **fit_params):
    """
    Fitting the preprocessing

    Parameters
    ----------
    df : DataFrame
        Data to use for fitting.
        In many cases, should be ``X_train``.
    """
    pdu._is_cols_subset_of_df_cols(self.cols, df)
    for col in self.cols:
        self.les[col].fit(df[col])
    self._is_fitted = True
    return self

这个类适合编码器的训练集,并在转换时使用适合的版本。代码的初始版本可以在这里找到。

我们可以使用scikit learn中的OrdinalEncoder来代替LabelEncoder,它允许多列编码。

将分类特征编码为整数数组。 这个转换器的输入应该是一个类似数组的整数或字符串,表示分类(离散)特征所取的值。特征被转换为序号整数。这将导致每个特性生成一列整数(0到n_categories - 1)。

>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],
       [1., 0.]])

描述和示例都是从它的文档页面复制的,你可以在这里找到:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder

主要使用@Alexander回答,但必须做一些更改-

cols_need_mapped = ['col1', 'col2']

mapper = {col: {cat: n for n, cat in enumerate(df[col].astype('category').cat.categories)} 
     for col in df[cols_need_mapped]}

for c in cols_need_mapped :
    df[c] = df[c].map(mapper[c])

然后,为了将来重用,你可以将输出保存到json文档中,当你需要它时,你可以读入并使用.map()函数,就像我上面所做的那样。

import pandas as pd
from sklearn.preprocessing import LabelEncoder

train=pd.read_csv('.../train.csv')

#X=train.loc[:,['waterpoint_type_group','status','waterpoint_type','source_class']].values
# Create a label encoder object 
def MultiLabelEncoder(columnlist,dataframe):
    for i in columnlist:

        labelencoder_X=LabelEncoder()
        dataframe[i]=labelencoder_X.fit_transform(dataframe[i])
columnlist=['waterpoint_type_group','status','waterpoint_type','source_class','source_type']
MultiLabelEncoder(columnlist,train)

在这里,我正在从位置读取一个csv,在函数中,我正在传递列列表,我想要labelencode和dataframe,我想应用这个。