我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

如果我们有单列来做标签编码和它的逆变换,当python中有多列时,很容易做到这一点

def stringtocategory(dataset):
    '''
    @author puja.sharma
    @see The function label encodes the object type columns and gives label      encoded and inverse tranform of the label encoded data
    @param dataset dataframe on whoes column the label encoding has to be done
    @return label encoded and inverse tranform of the label encoded data.
   ''' 
   data_original = dataset[:]
   data_tranformed = dataset[:]
   for y in dataset.columns:
       #check the dtype of the column object type contains strings or chars
       if (dataset[y].dtype == object):
          print("The string type features are  : " + y)
          le = preprocessing.LabelEncoder()
          le.fit(dataset[y].unique())
          #label encoded data
          data_tranformed[y] = le.transform(dataset[y])
          #inverse label transform  data
          data_original[y] = le.inverse_transform(data_tranformed[y])
   return data_tranformed,data_original

其他回答

如果我们有单列来做标签编码和它的逆变换,当python中有多列时,很容易做到这一点

def stringtocategory(dataset):
    '''
    @author puja.sharma
    @see The function label encodes the object type columns and gives label      encoded and inverse tranform of the label encoded data
    @param dataset dataframe on whoes column the label encoding has to be done
    @return label encoded and inverse tranform of the label encoded data.
   ''' 
   data_original = dataset[:]
   data_tranformed = dataset[:]
   for y in dataset.columns:
       #check the dtype of the column object type contains strings or chars
       if (dataset[y].dtype == object):
          print("The string type features are  : " + y)
          le = preprocessing.LabelEncoder()
          le.fit(dataset[y].unique())
          #label encoded data
          data_tranformed[y] = le.transform(dataset[y])
          #inverse label transform  data
          data_original[y] = le.inverse_transform(data_tranformed[y])
   return data_tranformed,data_original
import pandas as pd
from sklearn.preprocessing import LabelEncoder

train=pd.read_csv('.../train.csv')

#X=train.loc[:,['waterpoint_type_group','status','waterpoint_type','source_class']].values
# Create a label encoder object 
def MultiLabelEncoder(columnlist,dataframe):
    for i in columnlist:

        labelencoder_X=LabelEncoder()
        dataframe[i]=labelencoder_X.fit_transform(dataframe[i])
columnlist=['waterpoint_type_group','status','waterpoint_type','source_class','source_type']
MultiLabelEncoder(columnlist,train)

在这里,我正在从位置读取一个csv,在函数中,我正在传递列列表,我想要labelencode和dataframe,我想应用这个。

在这里和其他地方进行了大量的搜索和实验后,我认为你的答案是:

pd.DataFrame(列= df.columns, data = LabelEncoder () .fit_transform (df.values.flatten ()) .reshape (df.shape))

这将跨列保留类别名称:

import pandas as pd
from sklearn.preprocessing import LabelEncoder

df = pd.DataFrame([['A','B','C','D','E','F','G','I','K','H'],
                   ['A','E','H','F','G','I','K','','',''],
                   ['A','C','I','F','H','G','','','','']], 
                  columns=['A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

pd.DataFrame(columns=df.columns, data=LabelEncoder().fit_transform(df.values.flatten()).reshape(df.shape))

    A1  A2  A3  A4  A5  A6  A7  A8  A9  A10
0   1   2   3   4   5   6   7   9   10  8
1   1   5   8   6   7   9   10  0   0   0
2   1   3   9   6   8   7   0   0   0   0

我们可以使用scikit learn中的OrdinalEncoder来代替LabelEncoder,它允许多列编码。

将分类特征编码为整数数组。 这个转换器的输入应该是一个类似数组的整数或字符串,表示分类(离散)特征所取的值。特征被转换为序号整数。这将导致每个特性生成一列整数(0到n_categories - 1)。

>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],
       [1., 0.]])

描述和示例都是从它的文档页面复制的,你可以在这里找到:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder

如果你拥有object类型的所有特征,那么上面写的第一个答案很好https://stackoverflow.com/a/31939145/5840973。

但是,假设我们有混合类型的列。然后,我们可以以编程方式获取类型对象类型名称的特征列表,然后对它们进行标签编码。

#Fetch features of type Object
objFeatures = dataframe.select_dtypes(include="object").columns

#Iterate a loop for features of type object
from sklearn import preprocessing
le = preprocessing.LabelEncoder()

for feat in objFeatures:
    dataframe[feat] = le.fit_transform(dataframe[feat].astype(str))
 

dataframe.info()