我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。
将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。
import pandas
from sklearn import preprocessing
df = pandas.DataFrame({
'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'],
'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'],
'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego',
'New_York']
})
le = preprocessing.LabelEncoder()
le.fit(df)
回溯(最近一次调用):
文件“”,第1行,在
文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行
y = column_or_1d(y, warn=True)
文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中
raise ValueError("错误的输入形状{0}".format(形状))
ValueError:错误的输入形状(6,3)
对于如何解决这个问题有什么想法吗?
你可以很容易地做到,
df.apply(LabelEncoder().fit_transform)
EDIT2:
在scikit-learn 0.20中,推荐的方法是
OneHotEncoder().fit_transform(df)
因为OneHotEncoder现在支持字符串输入。
使用ColumnTransformer可以只对某些列应用OneHotEncoder。
编辑:
由于这个最初的答案是一年多前的,并获得了许多赞(包括赏金),我可能应该进一步扩展它。
对于inverse_transform和transform,你需要做一点修改。
from collections import defaultdict
d = defaultdict(LabelEncoder)
这样,您现在将所有列LabelEncoder保留为字典。
# Encoding the variable
fit = df.apply(lambda x: d[x.name].fit_transform(x))
# Inverse the encoded
fit.apply(lambda x: d[x.name].inverse_transform(x))
# Using the dictionary to label future data
df.apply(lambda x: d[x.name].transform(x))
MOAR编辑:
使用Neuraxle的flatforeach步骤,也可以在一次对所有平坦数据使用相同的LabelEncoder:
FlattenForEach(LabelEncoder(), then_unflatten=True).fit_transform(df)
要根据数据列使用单独的LabelEncoders,或者如果只有一些数据列需要进行标签编码,而不需要其他数据列,那么使用ColumnTransformer是一种解决方案,它允许对列选择和LabelEncoder实例进行更多控制。
在这里和其他地方进行了大量的搜索和实验后,我认为你的答案是:
pd.DataFrame(列= df.columns,
data = LabelEncoder () .fit_transform (df.values.flatten ()) .reshape (df.shape))
这将跨列保留类别名称:
import pandas as pd
from sklearn.preprocessing import LabelEncoder
df = pd.DataFrame([['A','B','C','D','E','F','G','I','K','H'],
['A','E','H','F','G','I','K','','',''],
['A','C','I','F','H','G','','','','']],
columns=['A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])
pd.DataFrame(columns=df.columns, data=LabelEncoder().fit_transform(df.values.flatten()).reshape(df.shape))
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0 1 2 3 4 5 6 7 9 10 8
1 1 5 8 6 7 9 10 0 0 0
2 1 3 9 6 8 7 0 0 0 0
你可以很容易地做到,
df.apply(LabelEncoder().fit_transform)
EDIT2:
在scikit-learn 0.20中,推荐的方法是
OneHotEncoder().fit_transform(df)
因为OneHotEncoder现在支持字符串输入。
使用ColumnTransformer可以只对某些列应用OneHotEncoder。
编辑:
由于这个最初的答案是一年多前的,并获得了许多赞(包括赏金),我可能应该进一步扩展它。
对于inverse_transform和transform,你需要做一点修改。
from collections import defaultdict
d = defaultdict(LabelEncoder)
这样,您现在将所有列LabelEncoder保留为字典。
# Encoding the variable
fit = df.apply(lambda x: d[x.name].fit_transform(x))
# Inverse the encoded
fit.apply(lambda x: d[x.name].inverse_transform(x))
# Using the dictionary to label future data
df.apply(lambda x: d[x.name].transform(x))
MOAR编辑:
使用Neuraxle的flatforeach步骤,也可以在一次对所有平坦数据使用相同的LabelEncoder:
FlattenForEach(LabelEncoder(), then_unflatten=True).fit_transform(df)
要根据数据列使用单独的LabelEncoders,或者如果只有一些数据列需要进行标签编码,而不需要其他数据列,那么使用ColumnTransformer是一种解决方案,它允许对列选择和LabelEncoder实例进行更多控制。