我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

我们不需要LabelEncoder。

您可以将列转换为类别,然后获取它们的代码。我使用下面的字典推导将此过程应用于每一列,并将结果包装回具有相同索引和列名的相同形状的数据框架中。

>>> pd.DataFrame({col: df[col].astype('category').cat.codes for col in df}, index=df.index)
   location  owner  pets
0         1      1     0
1         0      2     1
2         0      0     0
3         1      1     2
4         1      3     1
5         0      2     1

要创建映射字典,你可以使用字典理解式枚举类别:

>>> {col: {n: cat for n, cat in enumerate(df[col].astype('category').cat.categories)} 
     for col in df}

{'location': {0: 'New_York', 1: 'San_Diego'},
 'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
 'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}

其他回答

这是有可能做到这一切直接在熊猫,是非常适合的独特能力的替代方法。

首先,让我们创建一个字典的字典,将列及其值映射到新的替换值。

transform_dict = {}
for col in df.columns:
    cats = pd.Categorical(df[col]).categories
    d = {}
    for i, cat in enumerate(cats):
        d[cat] = i
    transform_dict[col] = d

transform_dict
{'location': {'New_York': 0, 'San_Diego': 1},
 'owner': {'Brick': 0, 'Champ': 1, 'Ron': 2, 'Veronica': 3},
 'pets': {'cat': 0, 'dog': 1, 'monkey': 2}}

由于这将始终是一个一对一的映射,我们可以反转内部字典以获得新值到原始值的映射。

inverse_transform_dict = {}
for col, d in transform_dict.items():
    inverse_transform_dict[col] = {v:k for k, v in d.items()}

inverse_transform_dict
{'location': {0: 'New_York', 1: 'San_Diego'},
 'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
 'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}

现在,我们可以使用replace方法的独特功能来获取一个嵌套的字典列表,并使用外部键作为列,使用内部键作为我们想要替换的值。

df.replace(transform_dict)
   location  owner  pets
0         1      1     0
1         0      2     1
2         0      0     0
3         1      1     2
4         1      3     1
5         0      2     1

通过再次链接replace方法,我们可以很容易地回到原来的方法

df.replace(transform_dict).replace(inverse_transform_dict)
    location     owner    pets
0  San_Diego     Champ     cat
1   New_York       Ron     dog
2   New_York     Brick     cat
3  San_Diego     Champ  monkey
4  San_Diego  Veronica     dog
5   New_York       Ron     dog

假设你只是想获得一个sklearn.预处理. labelencoder()对象,可以用来表示你的列,你所要做的就是:

le.fit(df.columns)

在上面的代码中,每一列都有一个唯一的数字。 更精确地说,你将得到df的1:1映射。列到le.transform(df.columns.get_values())。要获得列的编码,只需将其传递给le.transform(…)。作为一个例子,下面将得到每一列的编码:

le.transform(df.columns.get_values())

假设你想为你所有的行标签创建一个sklearn.预处理. labelencoder()对象,你可以这样做:

le.fit([y for x in df.get_values() for y in x])

在本例中,您很可能拥有非唯一的行标签(如您的问题所示)。要查看编码器创建了哪些类,可以执行le.classes_。你会注意到,这应该具有与set中相同的元素(y for x in df.get_values() for y in x)。再次使用le.transform(…)将行标签转换为编码标签。例如,如果您想检索df. xml文件中第一列的标签。列数组和第一行,你可以这样做:

le.transform([df.get_value(0, df.columns[0])])

你在评论中提出的问题有点复杂,但仍然可以 完成:

le.fit([str(z) for z in set((x[0], y) for x in df.iteritems() for y in x[1])])

上面的代码实现了以下功能:

使所有(列,行)对的唯一组合 将每个对表示为元组的字符串版本。这是克服LabelEncoder类不支持元组作为类名的一种变通方法。 将新项目贴合到LabelEncoder。

现在要使用这个新模型就有点复杂了。假设我们想要提取在前一个例子中查找的同一项的表示(df中的第一列)。列和第一行),我们可以这样做:

le.transform([str((df.columns[0], df.get_value(0, df.columns[0])))])

记住,现在每个查找都是一个元组的字符串表示 包含(列、行)。

主要使用@Alexander回答,但必须做一些更改-

cols_need_mapped = ['col1', 'col2']

mapper = {col: {cat: n for n, cat in enumerate(df[col].astype('category').cat.categories)} 
     for col in df[cols_need_mapped]}

for c in cols_need_mapped :
    df[c] = df[c].map(mapper[c])

然后,为了将来重用,你可以将输出保存到json文档中,当你需要它时,你可以读入并使用.map()函数,就像我上面所做的那样。

在这里和其他地方进行了大量的搜索和实验后,我认为你的答案是:

pd.DataFrame(列= df.columns, data = LabelEncoder () .fit_transform (df.values.flatten ()) .reshape (df.shape))

这将跨列保留类别名称:

import pandas as pd
from sklearn.preprocessing import LabelEncoder

df = pd.DataFrame([['A','B','C','D','E','F','G','I','K','H'],
                   ['A','E','H','F','G','I','K','','',''],
                   ['A','C','I','F','H','G','','','','']], 
                  columns=['A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

pd.DataFrame(columns=df.columns, data=LabelEncoder().fit_transform(df.values.flatten()).reshape(df.shape))

    A1  A2  A3  A4  A5  A6  A7  A8  A9  A10
0   1   2   3   4   5   6   7   9   10  8
1   1   5   8   6   7   9   10  0   0   0
2   1   3   9   6   8   7   0   0   0   0

如果你拥有object类型的所有特征,那么上面写的第一个答案很好https://stackoverflow.com/a/31939145/5840973。

但是,假设我们有混合类型的列。然后,我们可以以编程方式获取类型对象类型名称的特征列表,然后对它们进行标签编码。

#Fetch features of type Object
objFeatures = dataframe.select_dtypes(include="object").columns

#Iterate a loop for features of type object
from sklearn import preprocessing
le = preprocessing.LabelEncoder()

for feat in objFeatures:
    dataframe[feat] = le.fit_transform(dataframe[feat].astype(str))
 

dataframe.info()