我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

这是一年半后的事实,但我也需要能够。transform()多个熊猫数据帧列一次(以及能够。inverse_transform()他们)。这扩展了上面@PriceHardman的优秀建议:

class MultiColumnLabelEncoder(LabelEncoder):
    """
    Wraps sklearn LabelEncoder functionality for use on multiple columns of a
    pandas dataframe.

    """
    def __init__(self, columns=None):
        self.columns = columns

    def fit(self, dframe):
        """
        Fit label encoder to pandas columns.

        Access individual column classes via indexig `self.all_classes_`

        Access individual column encoders via indexing
        `self.all_encoders_`
        """
        # if columns are provided, iterate through and get `classes_`
        if self.columns is not None:
            # ndarray to hold LabelEncoder().classes_ for each
            # column; should match the shape of specified `columns`
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            self.all_encoders_ = np.ndarray(shape=self.columns.shape,
                                            dtype=object)
            for idx, column in enumerate(self.columns):
                # fit LabelEncoder to get `classes_` for the column
                le = LabelEncoder()
                le.fit(dframe.loc[:, column].values)
                # append the `classes_` to our ndarray container
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                # append this column's encoder
                self.all_encoders_[idx] = le
        else:
            # no columns specified; assume all are to be encoded
            self.columns = dframe.iloc[:, :].columns
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            for idx, column in enumerate(self.columns):
                le = LabelEncoder()
                le.fit(dframe.loc[:, column].values)
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                self.all_encoders_[idx] = le
        return self

    def fit_transform(self, dframe):
        """
        Fit label encoder and return encoded labels.

        Access individual column classes via indexing
        `self.all_classes_`

        Access individual column encoders via indexing
        `self.all_encoders_`

        Access individual column encoded labels via indexing
        `self.all_labels_`
        """
        # if columns are provided, iterate through and get `classes_`
        if self.columns is not None:
            # ndarray to hold LabelEncoder().classes_ for each
            # column; should match the shape of specified `columns`
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            self.all_encoders_ = np.ndarray(shape=self.columns.shape,
                                            dtype=object)
            self.all_labels_ = np.ndarray(shape=self.columns.shape,
                                          dtype=object)
            for idx, column in enumerate(self.columns):
                # instantiate LabelEncoder
                le = LabelEncoder()
                # fit and transform labels in the column
                dframe.loc[:, column] =\
                    le.fit_transform(dframe.loc[:, column].values)
                # append the `classes_` to our ndarray container
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                self.all_encoders_[idx] = le
                self.all_labels_[idx] = le
        else:
            # no columns specified; assume all are to be encoded
            self.columns = dframe.iloc[:, :].columns
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            for idx, column in enumerate(self.columns):
                le = LabelEncoder()
                dframe.loc[:, column] = le.fit_transform(
                        dframe.loc[:, column].values)
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                self.all_encoders_[idx] = le
        return dframe.loc[:, self.columns].values

    def transform(self, dframe):
        """
        Transform labels to normalized encoding.
        """
        if self.columns is not None:
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[
                    idx].transform(dframe.loc[:, column].values)
        else:
            self.columns = dframe.iloc[:, :].columns
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[idx]\
                    .transform(dframe.loc[:, column].values)
        return dframe.loc[:, self.columns].values

    def inverse_transform(self, dframe):
        """
        Transform labels back to original encoding.
        """
        if self.columns is not None:
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[idx]\
                    .inverse_transform(dframe.loc[:, column].values)
        else:
            self.columns = dframe.iloc[:, :].columns
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[idx]\
                    .inverse_transform(dframe.loc[:, column].values)
        return dframe.loc[:, self.columns].values

例子:

如果df和df_copy()是混合类型的pandas数据帧,你可以将MultiColumnLabelEncoder()应用到dtype=object列上,方法如下:

# get `object` columns
df_object_columns = df.iloc[:, :].select_dtypes(include=['object']).columns
df_copy_object_columns = df_copy.iloc[:, :].select_dtypes(include=['object']).columns

# instantiate `MultiColumnLabelEncoder`
mcle = MultiColumnLabelEncoder(columns=object_columns)

# fit to `df` data
mcle.fit(df)

# transform the `df` data
mcle.transform(df)

# returns output like below
array([[1, 0, 0, ..., 1, 1, 0],
       [0, 5, 1, ..., 1, 1, 2],
       [1, 1, 1, ..., 1, 1, 2],
       ..., 
       [3, 5, 1, ..., 1, 1, 2],

# transform `df_copy` data
mcle.transform(df_copy)

# returns output like below (assuming the respective columns 
# of `df_copy` contain the same unique values as that particular 
# column in `df`
array([[1, 0, 0, ..., 1, 1, 0],
       [0, 5, 1, ..., 1, 1, 2],
       [1, 1, 1, ..., 1, 1, 2],
       ..., 
       [3, 5, 1, ..., 1, 1, 2],

# inverse `df` data
mcle.inverse_transform(df)

# outputs data like below
array([['August', 'Friday', '2013', ..., 'N', 'N', 'CA'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['August', 'Monday', '2014', ..., 'N', 'N', 'NJ'],
       ..., 
       ['February', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['March', 'Tuesday', '2013', ..., 'N', 'N', 'NJ']], dtype=object)

# inverse `df_copy` data
mcle.inverse_transform(df_copy)

# outputs data like below
array([['August', 'Friday', '2013', ..., 'N', 'N', 'CA'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['August', 'Monday', '2014', ..., 'N', 'N', 'NJ'],
       ..., 
       ['February', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['March', 'Tuesday', '2013', ..., 'N', 'N', 'NJ']], dtype=object)

你可以通过索引访问单独的列类、列标签和用于适合每个列的列编码器:

mcle.all_classes_ mcle.all_encoders_ mcle.all_labels_

其他回答

不,LabelEncoder不这样做。它接受类标签的1维数组并生成1维数组。它的设计目的是处理分类问题中的类标签,而不是任意数据,任何强迫它用于其他用途的尝试都需要代码将实际问题转换为它解决的问题(并将解决方案转换回原始空间)。

如果我们有单列来做标签编码和它的逆变换,当python中有多列时,很容易做到这一点

def stringtocategory(dataset):
    '''
    @author puja.sharma
    @see The function label encodes the object type columns and gives label      encoded and inverse tranform of the label encoded data
    @param dataset dataframe on whoes column the label encoding has to be done
    @return label encoded and inverse tranform of the label encoded data.
   ''' 
   data_original = dataset[:]
   data_tranformed = dataset[:]
   for y in dataset.columns:
       #check the dtype of the column object type contains strings or chars
       if (dataset[y].dtype == object):
          print("The string type features are  : " + y)
          le = preprocessing.LabelEncoder()
          le.fit(dataset[y].unique())
          #label encoded data
          data_tranformed[y] = le.transform(dataset[y])
          #inverse label transform  data
          data_original[y] = le.inverse_transform(data_tranformed[y])
   return data_tranformed,data_original

问题是传递给fit函数的数据(pd dataframe)的形状。 你必须通过1d列表。

这是一年半后的事实,但我也需要能够。transform()多个熊猫数据帧列一次(以及能够。inverse_transform()他们)。这扩展了上面@PriceHardman的优秀建议:

class MultiColumnLabelEncoder(LabelEncoder):
    """
    Wraps sklearn LabelEncoder functionality for use on multiple columns of a
    pandas dataframe.

    """
    def __init__(self, columns=None):
        self.columns = columns

    def fit(self, dframe):
        """
        Fit label encoder to pandas columns.

        Access individual column classes via indexig `self.all_classes_`

        Access individual column encoders via indexing
        `self.all_encoders_`
        """
        # if columns are provided, iterate through and get `classes_`
        if self.columns is not None:
            # ndarray to hold LabelEncoder().classes_ for each
            # column; should match the shape of specified `columns`
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            self.all_encoders_ = np.ndarray(shape=self.columns.shape,
                                            dtype=object)
            for idx, column in enumerate(self.columns):
                # fit LabelEncoder to get `classes_` for the column
                le = LabelEncoder()
                le.fit(dframe.loc[:, column].values)
                # append the `classes_` to our ndarray container
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                # append this column's encoder
                self.all_encoders_[idx] = le
        else:
            # no columns specified; assume all are to be encoded
            self.columns = dframe.iloc[:, :].columns
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            for idx, column in enumerate(self.columns):
                le = LabelEncoder()
                le.fit(dframe.loc[:, column].values)
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                self.all_encoders_[idx] = le
        return self

    def fit_transform(self, dframe):
        """
        Fit label encoder and return encoded labels.

        Access individual column classes via indexing
        `self.all_classes_`

        Access individual column encoders via indexing
        `self.all_encoders_`

        Access individual column encoded labels via indexing
        `self.all_labels_`
        """
        # if columns are provided, iterate through and get `classes_`
        if self.columns is not None:
            # ndarray to hold LabelEncoder().classes_ for each
            # column; should match the shape of specified `columns`
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            self.all_encoders_ = np.ndarray(shape=self.columns.shape,
                                            dtype=object)
            self.all_labels_ = np.ndarray(shape=self.columns.shape,
                                          dtype=object)
            for idx, column in enumerate(self.columns):
                # instantiate LabelEncoder
                le = LabelEncoder()
                # fit and transform labels in the column
                dframe.loc[:, column] =\
                    le.fit_transform(dframe.loc[:, column].values)
                # append the `classes_` to our ndarray container
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                self.all_encoders_[idx] = le
                self.all_labels_[idx] = le
        else:
            # no columns specified; assume all are to be encoded
            self.columns = dframe.iloc[:, :].columns
            self.all_classes_ = np.ndarray(shape=self.columns.shape,
                                           dtype=object)
            for idx, column in enumerate(self.columns):
                le = LabelEncoder()
                dframe.loc[:, column] = le.fit_transform(
                        dframe.loc[:, column].values)
                self.all_classes_[idx] = (column,
                                          np.array(le.classes_.tolist(),
                                                  dtype=object))
                self.all_encoders_[idx] = le
        return dframe.loc[:, self.columns].values

    def transform(self, dframe):
        """
        Transform labels to normalized encoding.
        """
        if self.columns is not None:
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[
                    idx].transform(dframe.loc[:, column].values)
        else:
            self.columns = dframe.iloc[:, :].columns
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[idx]\
                    .transform(dframe.loc[:, column].values)
        return dframe.loc[:, self.columns].values

    def inverse_transform(self, dframe):
        """
        Transform labels back to original encoding.
        """
        if self.columns is not None:
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[idx]\
                    .inverse_transform(dframe.loc[:, column].values)
        else:
            self.columns = dframe.iloc[:, :].columns
            for idx, column in enumerate(self.columns):
                dframe.loc[:, column] = self.all_encoders_[idx]\
                    .inverse_transform(dframe.loc[:, column].values)
        return dframe.loc[:, self.columns].values

例子:

如果df和df_copy()是混合类型的pandas数据帧,你可以将MultiColumnLabelEncoder()应用到dtype=object列上,方法如下:

# get `object` columns
df_object_columns = df.iloc[:, :].select_dtypes(include=['object']).columns
df_copy_object_columns = df_copy.iloc[:, :].select_dtypes(include=['object']).columns

# instantiate `MultiColumnLabelEncoder`
mcle = MultiColumnLabelEncoder(columns=object_columns)

# fit to `df` data
mcle.fit(df)

# transform the `df` data
mcle.transform(df)

# returns output like below
array([[1, 0, 0, ..., 1, 1, 0],
       [0, 5, 1, ..., 1, 1, 2],
       [1, 1, 1, ..., 1, 1, 2],
       ..., 
       [3, 5, 1, ..., 1, 1, 2],

# transform `df_copy` data
mcle.transform(df_copy)

# returns output like below (assuming the respective columns 
# of `df_copy` contain the same unique values as that particular 
# column in `df`
array([[1, 0, 0, ..., 1, 1, 0],
       [0, 5, 1, ..., 1, 1, 2],
       [1, 1, 1, ..., 1, 1, 2],
       ..., 
       [3, 5, 1, ..., 1, 1, 2],

# inverse `df` data
mcle.inverse_transform(df)

# outputs data like below
array([['August', 'Friday', '2013', ..., 'N', 'N', 'CA'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['August', 'Monday', '2014', ..., 'N', 'N', 'NJ'],
       ..., 
       ['February', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['March', 'Tuesday', '2013', ..., 'N', 'N', 'NJ']], dtype=object)

# inverse `df_copy` data
mcle.inverse_transform(df_copy)

# outputs data like below
array([['August', 'Friday', '2013', ..., 'N', 'N', 'CA'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['August', 'Monday', '2014', ..., 'N', 'N', 'NJ'],
       ..., 
       ['February', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['April', 'Tuesday', '2014', ..., 'N', 'N', 'NJ'],
       ['March', 'Tuesday', '2013', ..., 'N', 'N', 'NJ']], dtype=object)

你可以通过索引访问单独的列类、列标签和用于适合每个列的列编码器:

mcle.all_classes_ mcle.all_encoders_ mcle.all_labels_

这个怎么样?

def MultiColumnLabelEncode(choice, columns, X):
    LabelEncoders = []
    if choice == 'encode':
        for i in enumerate(columns):
            LabelEncoders.append(LabelEncoder())
        i=0    
        for cols in columns:
            X[:, cols] = LabelEncoders[i].fit_transform(X[:, cols])
            i += 1
    elif choice == 'decode': 
        for cols in columns:
            X[:, cols] = LabelEncoders[i].inverse_transform(X[:, cols])
            i += 1
    else:
        print('Please select correct parameter "choice". Available parameters: encode/decode')

这不是最有效的,但它工作,它是超级简单。