我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

假设你只是想获得一个sklearn.预处理. labelencoder()对象,可以用来表示你的列,你所要做的就是:

le.fit(df.columns)

在上面的代码中,每一列都有一个唯一的数字。 更精确地说,你将得到df的1:1映射。列到le.transform(df.columns.get_values())。要获得列的编码,只需将其传递给le.transform(…)。作为一个例子,下面将得到每一列的编码:

le.transform(df.columns.get_values())

假设你想为你所有的行标签创建一个sklearn.预处理. labelencoder()对象,你可以这样做:

le.fit([y for x in df.get_values() for y in x])

在本例中,您很可能拥有非唯一的行标签(如您的问题所示)。要查看编码器创建了哪些类,可以执行le.classes_。你会注意到,这应该具有与set中相同的元素(y for x in df.get_values() for y in x)。再次使用le.transform(…)将行标签转换为编码标签。例如,如果您想检索df. xml文件中第一列的标签。列数组和第一行,你可以这样做:

le.transform([df.get_value(0, df.columns[0])])

你在评论中提出的问题有点复杂,但仍然可以 完成:

le.fit([str(z) for z in set((x[0], y) for x in df.iteritems() for y in x[1])])

上面的代码实现了以下功能:

使所有(列,行)对的唯一组合 将每个对表示为元组的字符串版本。这是克服LabelEncoder类不支持元组作为类名的一种变通方法。 将新项目贴合到LabelEncoder。

现在要使用这个新模型就有点复杂了。假设我们想要提取在前一个例子中查找的同一项的表示(df中的第一列)。列和第一行),我们可以这样做:

le.transform([str((df.columns[0], df.get_value(0, df.columns[0])))])

记住,现在每个查找都是一个元组的字符串表示 包含(列、行)。

其他回答

我们可以使用scikit learn中的OrdinalEncoder来代替LabelEncoder,它允许多列编码。

将分类特征编码为整数数组。 这个转换器的输入应该是一个类似数组的整数或字符串,表示分类(离散)特征所取的值。特征被转换为序号整数。这将导致每个特性生成一列整数(0到n_categories - 1)。

>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],
       [1., 0.]])

描述和示例都是从它的文档页面复制的,你可以在这里找到:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder

如果你在数据框架中有数值和类别两种类型的数据 你可以使用:这里X是我的数据框架,有分类变量和数值变量

from sklearn import preprocessing
le = preprocessing.LabelEncoder()

for i in range(0,X.shape[1]):
    if X.dtypes[i]=='object':
        X[X.columns[i]] = le.fit_transform(X[X.columns[i]])

注意:如果你对转换它们不感兴趣,这个技巧是很好的。

在这里和其他地方进行了大量的搜索和实验后,我认为你的答案是:

pd.DataFrame(列= df.columns, data = LabelEncoder () .fit_transform (df.values.flatten ()) .reshape (df.shape))

这将跨列保留类别名称:

import pandas as pd
from sklearn.preprocessing import LabelEncoder

df = pd.DataFrame([['A','B','C','D','E','F','G','I','K','H'],
                   ['A','E','H','F','G','I','K','','',''],
                   ['A','C','I','F','H','G','','','','']], 
                  columns=['A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

pd.DataFrame(columns=df.columns, data=LabelEncoder().fit_transform(df.values.flatten()).reshape(df.shape))

    A1  A2  A3  A4  A5  A6  A7  A8  A9  A10
0   1   2   3   4   5   6   7   9   10  8
1   1   5   8   6   7   9   10  0   0   0
2   1   3   9   6   8   7   0   0   0   0

从scikit-learn 0.20开始,你可以使用sklearn.compose.ColumnTransformer和sklearn.预处理. onehotencoder:

如果你只有分类变量,OneHotEncoder直接:

from sklearn.preprocessing import OneHotEncoder

OneHotEncoder(handle_unknown='ignore').fit_transform(df)

如果你有异构类型的特性:

from sklearn.compose import make_column_transformer
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import OneHotEncoder

categorical_columns = ['pets', 'owner', 'location']
numerical_columns = ['age', 'weigth', 'height']
column_trans = make_column_transformer(
    (categorical_columns, OneHotEncoder(handle_unknown='ignore'),
    (numerical_columns, RobustScaler())
column_trans.fit_transform(df)

文档中有更多选项:http://scikit-learn.org/stable/modules/compose.html#columntransformer-for-heterogeneous-data

我们不需要LabelEncoder。

您可以将列转换为类别,然后获取它们的代码。我使用下面的字典推导将此过程应用于每一列,并将结果包装回具有相同索引和列名的相同形状的数据框架中。

>>> pd.DataFrame({col: df[col].astype('category').cat.codes for col in df}, index=df.index)
   location  owner  pets
0         1      1     0
1         0      2     1
2         0      0     0
3         1      1     2
4         1      3     1
5         0      2     1

要创建映射字典,你可以使用字典理解式枚举类别:

>>> {col: {n: cat for n, cat in enumerate(df[col].astype('category').cat.categories)} 
     for col in df}

{'location': {0: 'New_York', 1: 'San_Diego'},
 'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
 'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}