我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

如果你拥有object类型的所有特征,那么上面写的第一个答案很好https://stackoverflow.com/a/31939145/5840973。

但是,假设我们有混合类型的列。然后,我们可以以编程方式获取类型对象类型名称的特征列表,然后对它们进行标签编码。

#Fetch features of type Object
objFeatures = dataframe.select_dtypes(include="object").columns

#Iterate a loop for features of type object
from sklearn import preprocessing
le = preprocessing.LabelEncoder()

for feat in objFeatures:
    dataframe[feat] = le.fit_transform(dataframe[feat].astype(str))
 

dataframe.info()

其他回答

这并没有直接回答你的问题(Naputipulu Jon和PriceHardman对此有精彩的回答)

但是,对于一些分类任务等,您可以使用

pandas.get_dummies(input_df) 

这可以输入带有分类数据的数据框架,并返回带有二进制值的数据框架。变量值被编码到结果数据框架中的列名中。更多的

如果你拥有object类型的所有特征,那么上面写的第一个答案很好https://stackoverflow.com/a/31939145/5840973。

但是,假设我们有混合类型的列。然后,我们可以以编程方式获取类型对象类型名称的特征列表,然后对它们进行标签编码。

#Fetch features of type Object
objFeatures = dataframe.select_dtypes(include="object").columns

#Iterate a loop for features of type object
from sklearn import preprocessing
le = preprocessing.LabelEncoder()

for feat in objFeatures:
    dataframe[feat] = le.fit_transform(dataframe[feat].astype(str))
 

dataframe.info()

正如larsmans提到的,LabelEncoder()只接受1维数组作为参数。也就是说,可以很容易地滚动自己的标签编码器,对您选择的多个列进行操作,并返回转换后的数据框架。我在这里的代码部分基于Zac Stewart的优秀博客文章。

创建自定义编码器只需要创建一个响应fit()、transform()和fit_transform()方法的类。对你来说,一个好的开始可能是这样的:

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline

# Create some toy data in a Pandas dataframe
fruit_data = pd.DataFrame({
    'fruit':  ['apple','orange','pear','orange'],
    'color':  ['red','orange','green','green'],
    'weight': [5,6,3,4]
})

class MultiColumnLabelEncoder:
    def __init__(self,columns = None):
        self.columns = columns # array of column names to encode

    def fit(self,X,y=None):
        return self # not relevant here

    def transform(self,X):
        '''
        Transforms columns of X specified in self.columns using
        LabelEncoder(). If no columns specified, transforms all
        columns in X.
        '''
        output = X.copy()
        if self.columns is not None:
            for col in self.columns:
                output[col] = LabelEncoder().fit_transform(output[col])
        else:
            for colname,col in output.iteritems():
                output[colname] = LabelEncoder().fit_transform(col)
        return output

    def fit_transform(self,X,y=None):
        return self.fit(X,y).transform(X)

假设我们想对两个分类属性(fruit和color)进行编码,而不使用数字属性权重。我们可以这样做:

MultiColumnLabelEncoder(columns = ['fruit','color']).fit_transform(fruit_data)

它转换了我们的fruit_data数据集

to

传递给它一个完全由分类变量组成的数据框架,省略columns参数将导致每个列都被编码(我相信这是你最初寻找的):

MultiColumnLabelEncoder().fit_transform(fruit_data.drop('weight',axis=1))

这个转换

to

.

请注意,当它试图编码已经是数值的属性时可能会阻塞(如果您愿意,可以添加一些代码来处理这个问题)。

另一个很好的特性是我们可以在管道中使用这个自定义转换器:

encoding_pipeline = Pipeline([
    ('encoding',MultiColumnLabelEncoder(columns=['fruit','color']))
    # add more pipeline steps as needed
])
encoding_pipeline.fit_transform(fruit_data)

在这里和其他地方进行了大量的搜索和实验后,我认为你的答案是:

pd.DataFrame(列= df.columns, data = LabelEncoder () .fit_transform (df.values.flatten ()) .reshape (df.shape))

这将跨列保留类别名称:

import pandas as pd
from sklearn.preprocessing import LabelEncoder

df = pd.DataFrame([['A','B','C','D','E','F','G','I','K','H'],
                   ['A','E','H','F','G','I','K','','',''],
                   ['A','C','I','F','H','G','','','','']], 
                  columns=['A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

pd.DataFrame(columns=df.columns, data=LabelEncoder().fit_transform(df.values.flatten()).reshape(df.shape))

    A1  A2  A3  A4  A5  A6  A7  A8  A9  A10
0   1   2   3   4   5   6   7   9   10  8
1   1   5   8   6   7   9   10  0   0   0
2   1   3   9   6   8   7   0   0   0   0

这个怎么样?

def MultiColumnLabelEncode(choice, columns, X):
    LabelEncoders = []
    if choice == 'encode':
        for i in enumerate(columns):
            LabelEncoders.append(LabelEncoder())
        i=0    
        for cols in columns:
            X[:, cols] = LabelEncoders[i].fit_transform(X[:, cols])
            i += 1
    elif choice == 'decode': 
        for cols in columns:
            X[:, cols] = LabelEncoders[i].inverse_transform(X[:, cols])
            i += 1
    else:
        print('Please select correct parameter "choice". Available parameters: encode/decode')

这不是最有效的,但它工作,它是超级简单。