我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

根据对@PriceHardman解决方案提出的意见,我将提出以下版本的类:

class LabelEncodingColoumns(BaseEstimator, TransformerMixin):
def __init__(self, cols=None):
    pdu._is_cols_input_valid(cols)
    self.cols = cols
    self.les = {col: LabelEncoder() for col in cols}
    self._is_fitted = False

def transform(self, df, **transform_params):
    """
    Scaling ``cols`` of ``df`` using the fitting

    Parameters
    ----------
    df : DataFrame
        DataFrame to be preprocessed
    """
    if not self._is_fitted:
        raise NotFittedError("Fitting was not preformed")
    pdu._is_cols_subset_of_df_cols(self.cols, df)

    df = df.copy()

    label_enc_dict = {}
    for col in self.cols:
        label_enc_dict[col] = self.les[col].transform(df[col])

    labelenc_cols = pd.DataFrame(label_enc_dict,
        # The index of the resulting DataFrame should be assigned and
        # equal to the one of the original DataFrame. Otherwise, upon
        # concatenation NaNs will be introduced.
        index=df.index
    )

    for col in self.cols:
        df[col] = labelenc_cols[col]
    return df

def fit(self, df, y=None, **fit_params):
    """
    Fitting the preprocessing

    Parameters
    ----------
    df : DataFrame
        Data to use for fitting.
        In many cases, should be ``X_train``.
    """
    pdu._is_cols_subset_of_df_cols(self.cols, df)
    for col in self.cols:
        self.les[col].fit(df[col])
    self._is_fitted = True
    return self

这个类适合编码器的训练集,并在转换时使用适合的版本。代码的初始版本可以在这里找到。

其他回答

这是有可能做到这一切直接在熊猫,是非常适合的独特能力的替代方法。

首先,让我们创建一个字典的字典,将列及其值映射到新的替换值。

transform_dict = {}
for col in df.columns:
    cats = pd.Categorical(df[col]).categories
    d = {}
    for i, cat in enumerate(cats):
        d[cat] = i
    transform_dict[col] = d

transform_dict
{'location': {'New_York': 0, 'San_Diego': 1},
 'owner': {'Brick': 0, 'Champ': 1, 'Ron': 2, 'Veronica': 3},
 'pets': {'cat': 0, 'dog': 1, 'monkey': 2}}

由于这将始终是一个一对一的映射,我们可以反转内部字典以获得新值到原始值的映射。

inverse_transform_dict = {}
for col, d in transform_dict.items():
    inverse_transform_dict[col] = {v:k for k, v in d.items()}

inverse_transform_dict
{'location': {0: 'New_York', 1: 'San_Diego'},
 'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
 'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}

现在,我们可以使用replace方法的独特功能来获取一个嵌套的字典列表,并使用外部键作为列,使用内部键作为我们想要替换的值。

df.replace(transform_dict)
   location  owner  pets
0         1      1     0
1         0      2     1
2         0      0     0
3         1      1     2
4         1      3     1
5         0      2     1

通过再次链接replace方法,我们可以很容易地回到原来的方法

df.replace(transform_dict).replace(inverse_transform_dict)
    location     owner    pets
0  San_Diego     Champ     cat
1   New_York       Ron     dog
2   New_York     Brick     cat
3  San_Diego     Champ  monkey
4  San_Diego  Veronica     dog
5   New_York       Ron     dog

这是我解决你问题的办法。为了将包含文本的数据帧列转换为编码值,只需使用我的函数text_to_numbers,它返回LE的字典。Key是列LabelEncoder()作为值的列名。

def text_to_numbers(df):
        le_dict = dict()
        for i in df.columns:
            if df[i].dtype not in ["float64", "bool", "int64"]:
                le_dict[i] = preprocessing.LabelEncoder()
                df[i] = le_dict[i].fit_transform(df[i])
    
        return df, le_dict

下面的函数将使保留原始的未编码数据帧成为可能。

 def numbers_to_text(df, le_dict):
        for i in le_dict.keys():
            df[i] = le_dict[i].inverse_transform(df[i])
    
        return df

下面是我一次性转换多列的解决方案,以及精确的inverse_transform

from sklearn import preprocessing
columns = ['buying','maint','lug_boot','safety','cls']  # columns names where transform is required
for X in columns:
  exec(f'le_{X} = preprocessing.LabelEncoder()')  #create label encoder with name "le_X", where X is column name
  exec(f'df.{X} = le_{X}.fit_transform(df.{X})')  #execute fit transform for column X with respective lable encoder "le_X", where X is column name
df.head()  # to display transformed results

for X in columns:
  exec(f'df.{X} = le_{X}.inverse_transform(df.{X})')  #execute inverse_transform for column X with respective lable encoder "le_X", where X is column name
df.head() # to display Inverse transformed results of df

我查看了LabelEncoder的源代码(https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/label.py)。它基于一组numpy变换,其中一个是np.unique()。这个函数只接受一维数组输入。(如果我说错了请指正)。

非常粗略的想法…… 首先,确定哪些列需要LabelEncoder,然后循环遍历每个列。

def cat_var(df): 
    """Identify categorical features. 

    Parameters
    ----------
    df: original df after missing operations 

    Returns
    -------
    cat_var_df: summary df with col index and col name for all categorical vars
    """
    col_type = df.dtypes
    col_names = list(df)

    cat_var_index = [i for i, x in enumerate(col_type) if x=='object']
    cat_var_name = [x for i, x in enumerate(col_names) if i in cat_var_index]

    cat_var_df = pd.DataFrame({'cat_ind': cat_var_index, 
                               'cat_name': cat_var_name})

    return cat_var_df



from sklearn.preprocessing import LabelEncoder 

def column_encoder(df, cat_var_list):
    """Encoding categorical feature in the dataframe

    Parameters
    ----------
    df: input dataframe 
    cat_var_list: categorical feature index and name, from cat_var function

    Return
    ------
    df: new dataframe where categorical features are encoded
    label_list: classes_ attribute for all encoded features 
    """

    label_list = []
    cat_var_df = cat_var(df)
    cat_list = cat_var_df.loc[:, 'cat_name']

    for index, cat_feature in enumerate(cat_list): 

        le = LabelEncoder()

        le.fit(df.loc[:, cat_feature])    
        label_list.append(list(le.classes_))

        df.loc[:, cat_feature] = le.transform(df.loc[:, cat_feature])

    return df, label_list

返回的df将是编码后的df, label_list将显示所有这些值在相应列中的含义。 这是我为工作编写的数据处理脚本的一个片段。如果你觉得还有什么改进的地方,请告诉我。

编辑: 这里只想提一下,上述方法在处理数据帧时不会遗漏最佳数据。不确定它是如何工作的数据帧包含丢失的数据。(在执行上述方法之前,我已经处理了缺失过程)

主要使用@Alexander回答,但必须做一些更改-

cols_need_mapped = ['col1', 'col2']

mapper = {col: {cat: n for n, cat in enumerate(df[col].astype('category').cat.categories)} 
     for col in df[cols_need_mapped]}

for c in cols_need_mapped :
    df[c] = df[c].map(mapper[c])

然后,为了将来重用,你可以将输出保存到json文档中,当你需要它时,你可以读入并使用.map()函数,就像我上面所做的那样。