我想使用ggplot2包并排放置两个图,即执行par(mfrow=c(1,2))的等效操作。

例如,我想让下面两个图以相同的比例并排显示。

x <- rnorm(100)
eps <- rnorm(100,0,.2)
qplot(x,3*x+eps)
qplot(x,2*x+eps)

我需要把它们放到同一个数据帧里吗?

qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

当前回答

并排的任意ggplot(或网格上的n个plot)

gridExtra包中的grid.arrange()函数将组合多个图;这就是把两个放在一起的方法。

require(gridExtra)
plot1 <- qplot(1)
plot2 <- qplot(1)
grid.arrange(plot1, plot2, ncol=2)

当两个图不是基于相同的数据时,这很有用,例如,如果您想在不使用重塑()的情况下绘制不同的变量。

这将把输出作为副作用绘制出来。要将副作用打印到文件中,请指定一个设备驱动程序(如pdf、png等)。

pdf("foo.pdf")
grid.arrange(plot1, plot2)
dev.off()

或者,将arrangeGrob()与ggsave()结合使用,

ggsave("foo.pdf", arrangeGrob(plot1, plot2))

这相当于使用par(mfrow = c(1,2))绘制两个不同的图。这不仅节省了整理数据的时间,而且当你想要两个不同的图时,这是必要的。


附录:facet的使用

切面有助于为不同的群体制作相似的图。下面的许多回答都指出了这一点,但我想用与上面的图等效的例子来强调这种方法。

mydata <- data.frame(myGroup = c('a', 'b'), myX = c(1,1))

qplot(data = mydata, 
    x = myX, 
    facets = ~myGroup)

ggplot(data = mydata) + 
    geom_bar(aes(myX)) + 
    facet_wrap(~myGroup)

更新

cowplot中的plot_grid函数值得作为grid.arrange的替代。参见下面@claus-wilke的回答和这个小插图,了解等效的方法;但该功能允许基于此小插图对地块位置和大小进行更精细的控制。

其他回答

并排的任意ggplot(或网格上的n个plot)

gridExtra包中的grid.arrange()函数将组合多个图;这就是把两个放在一起的方法。

require(gridExtra)
plot1 <- qplot(1)
plot2 <- qplot(1)
grid.arrange(plot1, plot2, ncol=2)

当两个图不是基于相同的数据时,这很有用,例如,如果您想在不使用重塑()的情况下绘制不同的变量。

这将把输出作为副作用绘制出来。要将副作用打印到文件中,请指定一个设备驱动程序(如pdf、png等)。

pdf("foo.pdf")
grid.arrange(plot1, plot2)
dev.off()

或者,将arrangeGrob()与ggsave()结合使用,

ggsave("foo.pdf", arrangeGrob(plot1, plot2))

这相当于使用par(mfrow = c(1,2))绘制两个不同的图。这不仅节省了整理数据的时间,而且当你想要两个不同的图时,这是必要的。


附录:facet的使用

切面有助于为不同的群体制作相似的图。下面的许多回答都指出了这一点,但我想用与上面的图等效的例子来强调这种方法。

mydata <- data.frame(myGroup = c('a', 'b'), myX = c(1,1))

qplot(data = mydata, 
    x = myX, 
    facets = ~myGroup)

ggplot(data = mydata) + 
    geom_bar(aes(myX)) + 
    facet_wrap(~myGroup)

更新

cowplot中的plot_grid函数值得作为grid.arrange的替代。参见下面@claus-wilke的回答和这个小插图,了解等效的方法;但该功能允许基于此小插图对地块位置和大小进行更精细的控制。

Ggplot2基于网格图形,网格图形提供了在页面上安排图形的不同系统。par(mfrow…)命令并没有直接的对等物,因为网格对象(称为grobs)不一定是立即绘制的,但在转换为图形输出之前,可以作为常规R对象存储和操作。这比现在绘制基础图形的模型具有更大的灵活性,但策略必然略有不同。

我编写grid.arrange()是为了提供一个尽可能接近par(mfrow)的简单接口。在其最简单的形式中,代码看起来像:

library(ggplot2)
x <- rnorm(100)
eps <- rnorm(100,0,.2)
p1 <- qplot(x,3*x+eps)
p2 <- qplot(x,2*x+eps)

library(gridExtra)
grid.arrange(p1, p2, ncol = 2)

在这个小插图中详细介绍了更多的选项。

一个常见的抱怨是,图不一定是对齐的,例如,当它们有不同大小的轴标签时,但这是通过设计:网格。Arrange没有尝试处理特殊情况下的ggplot2对象,并将它们与其他grobs(例如,晶格图)同等对待。它只是将抓取放在矩形布局中。

对于ggplot2对象的特殊情况,我编写了另一个函数ggarrange,该函数具有类似的接口,它尝试对齐绘图面板(包括分面图),并尝试尊重用户定义的纵横比。

library(egg)
ggarrange(p1, p2, ncol = 2)

这两个函数都与ggsave()兼容。对于不同选项的一般概述和一些历史背景,本小插图提供了额外的信息。

更新:这个答案非常古老。gridExtra::grid.arrange()现在是推荐的方法。 我把这个留在这里,也许有用。


Stephen Turner在Getting Genetics Done博客上发布了arrange()函数(参见文章中的应用说明)

vp.layout <- function(x, y) viewport(layout.pos.row=x, layout.pos.col=y)
arrange <- function(..., nrow=NULL, ncol=NULL, as.table=FALSE) {
 dots <- list(...)
 n <- length(dots)
 if(is.null(nrow) & is.null(ncol)) { nrow = floor(n/2) ; ncol = ceiling(n/nrow)}
 if(is.null(nrow)) { nrow = ceiling(n/ncol)}
 if(is.null(ncol)) { ncol = ceiling(n/nrow)}
        ## NOTE see n2mfrow in grDevices for possible alternative
grid.newpage()
pushViewport(viewport(layout=grid.layout(nrow,ncol) ) )
 ii.p <- 1
 for(ii.row in seq(1, nrow)){
 ii.table.row <- ii.row 
 if(as.table) {ii.table.row <- nrow - ii.table.row + 1}
  for(ii.col in seq(1, ncol)){
   ii.table <- ii.p
   if(ii.p > n) break
   print(dots[[ii.table]], vp=vp.layout(ii.table.row, ii.col))
   ii.p <- ii.p + 1
  }
 }
}

cowplot软件包以适合出版的方式为您提供了一种很好的方法。

x <- rnorm(100)
eps <- rnorm(100,0,.2)
A = qplot(x,3*x+eps, geom = c("point", "smooth"))+theme_gray()
B = qplot(x,2*x+eps, geom = c("point", "smooth"))+theme_gray()
cowplot::plot_grid(A, B, labels = c("A", "B"), align = "v")

您可以使用温斯顿张的R食谱下面的多绘图函数

multiplot(plot1, plot2, cols=2)

multiplot <- function(..., plotlist=NULL, cols) {
    require(grid)

    # Make a list from the ... arguments and plotlist
    plots <- c(list(...), plotlist)

    numPlots = length(plots)

    # Make the panel
    plotCols = cols                          # Number of columns of plots
    plotRows = ceiling(numPlots/plotCols) # Number of rows needed, calculated from # of cols

    # Set up the page
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(plotRows, plotCols)))
    vplayout <- function(x, y)
        viewport(layout.pos.row = x, layout.pos.col = y)

    # Make each plot, in the correct location
    for (i in 1:numPlots) {
        curRow = ceiling(i/plotCols)
        curCol = (i-1) %% plotCols + 1
        print(plots[[i]], vp = vplayout(curRow, curCol ))
    }

}