我想使用ggplot2包并排放置两个图,即执行par(mfrow=c(1,2))的等效操作。

例如,我想让下面两个图以相同的比例并排显示。

x <- rnorm(100)
eps <- rnorm(100,0,.2)
qplot(x,3*x+eps)
qplot(x,2*x+eps)

我需要把它们放到同一个数据帧里吗?

qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

当前回答

并排的任意ggplot(或网格上的n个plot)

gridExtra包中的grid.arrange()函数将组合多个图;这就是把两个放在一起的方法。

require(gridExtra)
plot1 <- qplot(1)
plot2 <- qplot(1)
grid.arrange(plot1, plot2, ncol=2)

当两个图不是基于相同的数据时,这很有用,例如,如果您想在不使用重塑()的情况下绘制不同的变量。

这将把输出作为副作用绘制出来。要将副作用打印到文件中,请指定一个设备驱动程序(如pdf、png等)。

pdf("foo.pdf")
grid.arrange(plot1, plot2)
dev.off()

或者,将arrangeGrob()与ggsave()结合使用,

ggsave("foo.pdf", arrangeGrob(plot1, plot2))

这相当于使用par(mfrow = c(1,2))绘制两个不同的图。这不仅节省了整理数据的时间,而且当你想要两个不同的图时,这是必要的。


附录:facet的使用

切面有助于为不同的群体制作相似的图。下面的许多回答都指出了这一点,但我想用与上面的图等效的例子来强调这种方法。

mydata <- data.frame(myGroup = c('a', 'b'), myX = c(1,1))

qplot(data = mydata, 
    x = myX, 
    facets = ~myGroup)

ggplot(data = mydata) + 
    geom_bar(aes(myX)) + 
    facet_wrap(~myGroup)

更新

cowplot中的plot_grid函数值得作为grid.arrange的替代。参见下面@claus-wilke的回答和这个小插图,了解等效的方法;但该功能允许基于此小插图对地块位置和大小进行更精细的控制。

其他回答

使用补丁包,你可以简单地使用+运算符:

library(ggplot2)
library(patchwork)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))


p1 + p2

其他操作符包括/,用于堆叠图,并排放置图,以及(),用于对元素进行分组。例如,你可以用(p1 | p2 | p3) /p来配置上面一行的3个地块和下面一行的一个地块。有关更多示例,请参阅包文档。

是的,我认为你需要适当地安排你的数据。一种方法是:

X <- data.frame(x=rep(x,2),
                y=c(3*x+eps, 2*x+eps),
                case=rep(c("first","second"), each=100))

qplot(x, y, data=X, facets = . ~ case) + geom_smooth()

我相信在plyr或重塑中有更好的技巧——我仍然没有真正跟上速度 哈德利设计的这些强大的软件包。

使用重塑包可以完成如下操作。

library(ggplot2)
wide <- data.frame(x = rnorm(100), eps = rnorm(100, 0, .2))
wide$first <- with(wide, 3 * x + eps)
wide$second <- with(wide, 2 * x + eps)
long <- melt(wide, id.vars = c("x", "eps"))
ggplot(long, aes(x = x, y = value)) + geom_smooth() + geom_point() + facet_grid(.~ variable)

根据我的经验,网格。如果您试图在循环中生成情节,那么Arrange工作得很好。

简短代码片段:

gridExtra::grid.arrange(plot1, plot2, ncol = 2)

**更新此注释以展示如何在for循环中使用grid.arrange()为类别变量的不同因素生成图表。

for (bin_i in levels(athlete_clean$BMI_cat)) {

plot_BMI <- athlete_clean %>% filter(BMI_cat == bin_i) %>% group_by(BMI_cat,Team) %>% summarize(count_BMI_team = n()) %>% 
          mutate(percentage_cbmiT = round(count_BMI_team/sum(count_BMI_team) * 100,2)) %>% 
          arrange(-count_BMI_team) %>% top_n(10,count_BMI_team) %>% 
          ggplot(aes(x = reorder(Team,count_BMI_team), y = count_BMI_team, fill = Team)) +
            geom_bar(stat = "identity") +
            theme_bw() +
            # facet_wrap(~Medal) +
            labs(title = paste("Top 10 Participating Teams with \n",bin_i," BMI",sep=""), y = "Number of Athletes", 
                 x = paste("Teams - ",bin_i," BMI Category", sep="")) +
            geom_text(aes(label = paste(percentage_cbmiT,"%",sep = "")), 
                      size = 3, check_overlap = T,  position = position_stack(vjust = 0.7) ) +
            theme(axis.text.x = element_text(angle = 00, vjust = 0.5), plot.title = element_text(hjust = 0.5), legend.position = "none") +
            coord_flip()

plot_BMI_Medal <- athlete_clean %>% 
          filter(!is.na(Medal), BMI_cat == bin_i) %>% 
          group_by(BMI_cat,Team) %>% 
          summarize(count_BMI_team = n()) %>% 
          mutate(percentage_cbmiT = round(count_BMI_team/sum(count_BMI_team) * 100,2)) %>% 
          arrange(-count_BMI_team) %>% top_n(10,count_BMI_team) %>% 
          ggplot(aes(x = reorder(Team,count_BMI_team), y = count_BMI_team, fill = Team)) +
            geom_bar(stat = "identity") +
            theme_bw() +
            # facet_wrap(~Medal) +
            labs(title = paste("Top 10 Winning Teams with \n",bin_i," BMI",sep=""), y = "Number of Athletes", 
                 x = paste("Teams - ",bin_i," BMI Category", sep="")) +
            geom_text(aes(label = paste(percentage_cbmiT,"%",sep = "")), 
                      size = 3, check_overlap = T,  position = position_stack(vjust = 0.7) ) +
            theme(axis.text.x = element_text(angle = 00, vjust = 0.5), plot.title = element_text(hjust = 0.5), legend.position = "none") +
            coord_flip()

gridExtra::grid.arrange(plot_BMI, plot_BMI_Medal, ncol = 2)

}

下面包含了上面for循环中的一个样例图。 上述循环将为BMI类别的所有级别生成多个图。

样本图像

如果您希望在for循环中看到grid.arrange()的更全面的使用,请访问https://rpubs.com/Mayank7j_2020/olympic_data_2000_2016

还可以考虑ggpubr包中的ggarrange。它有很多好处,包括在情节之间对齐轴和将常见图例合并为一个图例的选项。