我想使用ggplot2包并排放置两个图,即执行par(mfrow=c(1,2))的等效操作。
例如,我想让下面两个图以相同的比例并排显示。
x <- rnorm(100)
eps <- rnorm(100,0,.2)
qplot(x,3*x+eps)
qplot(x,2*x+eps)
我需要把它们放到同一个数据帧里吗?
qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()
我想使用ggplot2包并排放置两个图,即执行par(mfrow=c(1,2))的等效操作。
例如,我想让下面两个图以相同的比例并排显示。
x <- rnorm(100)
eps <- rnorm(100,0,.2)
qplot(x,3*x+eps)
qplot(x,2*x+eps)
我需要把它们放到同一个数据帧里吗?
qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()
当前回答
更新:这个答案非常古老。gridExtra::grid.arrange()现在是推荐的方法。 我把这个留在这里,也许有用。
Stephen Turner在Getting Genetics Done博客上发布了arrange()函数(参见文章中的应用说明)
vp.layout <- function(x, y) viewport(layout.pos.row=x, layout.pos.col=y)
arrange <- function(..., nrow=NULL, ncol=NULL, as.table=FALSE) {
dots <- list(...)
n <- length(dots)
if(is.null(nrow) & is.null(ncol)) { nrow = floor(n/2) ; ncol = ceiling(n/nrow)}
if(is.null(nrow)) { nrow = ceiling(n/ncol)}
if(is.null(ncol)) { ncol = ceiling(n/nrow)}
## NOTE see n2mfrow in grDevices for possible alternative
grid.newpage()
pushViewport(viewport(layout=grid.layout(nrow,ncol) ) )
ii.p <- 1
for(ii.row in seq(1, nrow)){
ii.table.row <- ii.row
if(as.table) {ii.table.row <- nrow - ii.table.row + 1}
for(ii.col in seq(1, ncol)){
ii.table <- ii.p
if(ii.p > n) break
print(dots[[ii.table]], vp=vp.layout(ii.table.row, ii.col))
ii.p <- ii.p + 1
}
}
}
其他回答
是的,我认为你需要适当地安排你的数据。一种方法是:
X <- data.frame(x=rep(x,2),
y=c(3*x+eps, 2*x+eps),
case=rep(c("first","second"), each=100))
qplot(x, y, data=X, facets = . ~ case) + geom_smooth()
我相信在plyr或重塑中有更好的技巧——我仍然没有真正跟上速度 哈德利设计的这些强大的软件包。
使用tidyverse:
x <- rnorm(100)
eps <- rnorm(100,0,.2)
df <- data.frame(x, eps) %>%
mutate(p1 = 3*x+eps, p2 = 2*x+eps) %>%
tidyr::gather("plot", "value", 3:4) %>%
ggplot(aes(x = x , y = value)) +
geom_point() +
geom_smooth() +
facet_wrap(~plot, ncol =2)
df
还可以考虑ggpubr包中的ggarrange。它有很多好处,包括在情节之间对齐轴和将常见图例合并为一个图例的选项。
基于网格的解决方案的一个缺点。他们的一个缺点是很难像大多数期刊要求的那样用字母(A, B等)来标记这些图。
我写了cowplot包来解决这个(和其他一些)问题,特别是函数plot_grid():
library(cowplot)
iris1 <- ggplot(iris, aes(x = Species, y = Sepal.Length)) +
geom_boxplot() + theme_bw()
iris2 <- ggplot(iris, aes(x = Sepal.Length, fill = Species)) +
geom_density(alpha = 0.7) + theme_bw() +
theme(legend.position = c(0.8, 0.8))
plot_grid(iris1, iris2, labels = "AUTO")
plot_grid()返回的对象是另一个ggplot2对象,你可以像往常一样用ggsave()保存它:
p <- plot_grid(iris1, iris2, labels = "AUTO")
ggsave("plot.pdf", p)
或者,你可以使用cowplot函数save_plot(),它是ggsave()的一个薄包装,可以很容易地获得组合图的正确尺寸,例如:
p <- plot_grid(iris1, iris2, labels = "AUTO")
save_plot("plot.pdf", p, ncol = 2)
(ncol = 2参数告诉save_plot()有两个并排的图像,而save_plot()使保存的图像宽度增加一倍。)
有关如何在网格中安排图的更深入描述,请参阅此小插图。还有一个小插图解释如何用一个共享的传说来制作情节。
一个常见的混淆点是cowplot包更改了默认的ggplot2主题。这个包之所以这样做,是因为它最初是为内部实验室使用而编写的,我们从不使用默认主题。如果这导致问题,您可以使用以下三种方法之一来解决它们:
1. 为每个情节手动设置主题。我认为始终为每个情节指定一个特定的主题是一个很好的实践,就像我在上面的示例中对+ theme_bw()所做的那样。如果您指定了一个特定的主题,那么默认主题并不重要。
2. 将默认主题恢复为ggplot2默认。你可以用一行代码做到这一点:
theme_set(theme_gray())
3.调用cowplot函数而不附加包。你也可以不调用library(cowplot)或require(cowplot),而是通过前置cowplot::来调用cowplot函数。例如,上面使用ggplot2默认主题的示例将变成:
## Commented out, we don't call this
# library(cowplot)
iris1 <- ggplot(iris, aes(x = Species, y = Sepal.Length)) +
geom_boxplot()
iris2 <- ggplot(iris, aes(x = Sepal.Length, fill = Species)) +
geom_density(alpha = 0.7) +
theme(legend.position = c(0.8, 0.8))
cowplot::plot_grid(iris1, iris2, labels = "AUTO")
更新:
从cowplot 1.0开始,默认的ggplot2主题不再更改。 从ggplot2 3.0.0开始,可以直接对图进行标记,参见这里的示例。
根据我的经验,网格。如果您试图在循环中生成情节,那么Arrange工作得很好。
简短代码片段:
gridExtra::grid.arrange(plot1, plot2, ncol = 2)
**更新此注释以展示如何在for循环中使用grid.arrange()为类别变量的不同因素生成图表。
for (bin_i in levels(athlete_clean$BMI_cat)) {
plot_BMI <- athlete_clean %>% filter(BMI_cat == bin_i) %>% group_by(BMI_cat,Team) %>% summarize(count_BMI_team = n()) %>%
mutate(percentage_cbmiT = round(count_BMI_team/sum(count_BMI_team) * 100,2)) %>%
arrange(-count_BMI_team) %>% top_n(10,count_BMI_team) %>%
ggplot(aes(x = reorder(Team,count_BMI_team), y = count_BMI_team, fill = Team)) +
geom_bar(stat = "identity") +
theme_bw() +
# facet_wrap(~Medal) +
labs(title = paste("Top 10 Participating Teams with \n",bin_i," BMI",sep=""), y = "Number of Athletes",
x = paste("Teams - ",bin_i," BMI Category", sep="")) +
geom_text(aes(label = paste(percentage_cbmiT,"%",sep = "")),
size = 3, check_overlap = T, position = position_stack(vjust = 0.7) ) +
theme(axis.text.x = element_text(angle = 00, vjust = 0.5), plot.title = element_text(hjust = 0.5), legend.position = "none") +
coord_flip()
plot_BMI_Medal <- athlete_clean %>%
filter(!is.na(Medal), BMI_cat == bin_i) %>%
group_by(BMI_cat,Team) %>%
summarize(count_BMI_team = n()) %>%
mutate(percentage_cbmiT = round(count_BMI_team/sum(count_BMI_team) * 100,2)) %>%
arrange(-count_BMI_team) %>% top_n(10,count_BMI_team) %>%
ggplot(aes(x = reorder(Team,count_BMI_team), y = count_BMI_team, fill = Team)) +
geom_bar(stat = "identity") +
theme_bw() +
# facet_wrap(~Medal) +
labs(title = paste("Top 10 Winning Teams with \n",bin_i," BMI",sep=""), y = "Number of Athletes",
x = paste("Teams - ",bin_i," BMI Category", sep="")) +
geom_text(aes(label = paste(percentage_cbmiT,"%",sep = "")),
size = 3, check_overlap = T, position = position_stack(vjust = 0.7) ) +
theme(axis.text.x = element_text(angle = 00, vjust = 0.5), plot.title = element_text(hjust = 0.5), legend.position = "none") +
coord_flip()
gridExtra::grid.arrange(plot_BMI, plot_BMI_Medal, ncol = 2)
}
下面包含了上面for循环中的一个样例图。 上述循环将为BMI类别的所有级别生成多个图。
样本图像
如果您希望在for循环中看到grid.arrange()的更全面的使用,请访问https://rpubs.com/Mayank7j_2020/olympic_data_2000_2016