我想使用ggplot2包并排放置两个图,即执行par(mfrow=c(1,2))的等效操作。

例如,我想让下面两个图以相同的比例并排显示。

x <- rnorm(100)
eps <- rnorm(100,0,.2)
qplot(x,3*x+eps)
qplot(x,2*x+eps)

我需要把它们放到同一个数据帧里吗?

qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

当前回答

如果您希望使用循环绘制多个ggplot图(例如:使用循环在ggplot中创建具有不同y轴值的多个图),上述解决方案可能不太有效,这是分析未知(或大型)数据集的理想步骤(例如,当您希望绘制数据集中所有变量的计数时)。

下面的代码展示了如何使用上面提到的“multiplot()”来实现这一点,其源代码在这里:http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2):

plotAllCounts <- function (dt){   
  plots <- list();
  for(i in 1:ncol(dt)) {
    strX = names(dt)[i]
    print(sprintf("%i: strX = %s", i, strX))
    plots[[i]] <- ggplot(dt) + xlab(strX) +
      geom_point(aes_string(strX),stat="count")
  }

  columnsToPlot <- floor(sqrt(ncol(dt)))
  multiplot(plotlist = plots, cols = columnsToPlot)
}

现在运行函数-以获取在一页上使用ggplot打印的所有变量的Counts

dt = ggplot2::diamonds
plotAllCounts(dt)

需要注意的一点是: 在上面的代码中使用aes(get(strX)),而不是aes_string(strX)将不会绘制所需的图形,这是在处理ggplot时通常在循环中使用的。相反,它会多次绘制最后一个图形。我还没有弄清楚为什么-它可能必须做aes和aes_string在ggplot中被调用。

除此之外,希望你会发现这个函数有用。

其他回答

使用tidyverse:

x <- rnorm(100)
eps <- rnorm(100,0,.2)
df <- data.frame(x, eps) %>% 
  mutate(p1 = 3*x+eps, p2 = 2*x+eps) %>% 
  tidyr::gather("plot", "value", 3:4) %>% 
  ggplot(aes(x = x , y = value)) + 
    geom_point() + 
    geom_smooth() + 
    facet_wrap(~plot, ncol =2)

df

如果您希望使用循环绘制多个ggplot图(例如:使用循环在ggplot中创建具有不同y轴值的多个图),上述解决方案可能不太有效,这是分析未知(或大型)数据集的理想步骤(例如,当您希望绘制数据集中所有变量的计数时)。

下面的代码展示了如何使用上面提到的“multiplot()”来实现这一点,其源代码在这里:http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2):

plotAllCounts <- function (dt){   
  plots <- list();
  for(i in 1:ncol(dt)) {
    strX = names(dt)[i]
    print(sprintf("%i: strX = %s", i, strX))
    plots[[i]] <- ggplot(dt) + xlab(strX) +
      geom_point(aes_string(strX),stat="count")
  }

  columnsToPlot <- floor(sqrt(ncol(dt)))
  multiplot(plotlist = plots, cols = columnsToPlot)
}

现在运行函数-以获取在一页上使用ggplot打印的所有变量的Counts

dt = ggplot2::diamonds
plotAllCounts(dt)

需要注意的一点是: 在上面的代码中使用aes(get(strX)),而不是aes_string(strX)将不会绘制所需的图形,这是在处理ggplot时通常在循环中使用的。相反,它会多次绘制最后一个图形。我还没有弄清楚为什么-它可能必须做aes和aes_string在ggplot中被调用。

除此之外,希望你会发现这个函数有用。

cowplot软件包以适合出版的方式为您提供了一种很好的方法。

x <- rnorm(100)
eps <- rnorm(100,0,.2)
A = qplot(x,3*x+eps, geom = c("point", "smooth"))+theme_gray()
B = qplot(x,2*x+eps, geom = c("point", "smooth"))+theme_gray()
cowplot::plot_grid(A, B, labels = c("A", "B"), align = "v")

使用重塑包可以完成如下操作。

library(ggplot2)
wide <- data.frame(x = rnorm(100), eps = rnorm(100, 0, .2))
wide$first <- with(wide, 3 * x + eps)
wide$second <- with(wide, 2 * x + eps)
long <- melt(wide, id.vars = c("x", "eps"))
ggplot(long, aes(x = x, y = value)) + geom_smooth() + geom_point() + facet_grid(.~ variable)

基于网格的解决方案的一个缺点。他们的一个缺点是很难像大多数期刊要求的那样用字母(A, B等)来标记这些图。

我写了cowplot包来解决这个(和其他一些)问题,特别是函数plot_grid():

library(cowplot)

iris1 <- ggplot(iris, aes(x = Species, y = Sepal.Length)) +
  geom_boxplot() + theme_bw()

iris2 <- ggplot(iris, aes(x = Sepal.Length, fill = Species)) +
  geom_density(alpha = 0.7) + theme_bw() +
  theme(legend.position = c(0.8, 0.8))

plot_grid(iris1, iris2, labels = "AUTO")

plot_grid()返回的对象是另一个ggplot2对象,你可以像往常一样用ggsave()保存它:

p <- plot_grid(iris1, iris2, labels = "AUTO")
ggsave("plot.pdf", p)

或者,你可以使用cowplot函数save_plot(),它是ggsave()的一个薄包装,可以很容易地获得组合图的正确尺寸,例如:

p <- plot_grid(iris1, iris2, labels = "AUTO")
save_plot("plot.pdf", p, ncol = 2)

(ncol = 2参数告诉save_plot()有两个并排的图像,而save_plot()使保存的图像宽度增加一倍。)

有关如何在网格中安排图的更深入描述,请参阅此小插图。还有一个小插图解释如何用一个共享的传说来制作情节。

一个常见的混淆点是cowplot包更改了默认的ggplot2主题。这个包之所以这样做,是因为它最初是为内部实验室使用而编写的,我们从不使用默认主题。如果这导致问题,您可以使用以下三种方法之一来解决它们:

1. 为每个情节手动设置主题。我认为始终为每个情节指定一个特定的主题是一个很好的实践,就像我在上面的示例中对+ theme_bw()所做的那样。如果您指定了一个特定的主题,那么默认主题并不重要。

2. 将默认主题恢复为ggplot2默认。你可以用一行代码做到这一点:

theme_set(theme_gray())

3.调用cowplot函数而不附加包。你也可以不调用library(cowplot)或require(cowplot),而是通过前置cowplot::来调用cowplot函数。例如,上面使用ggplot2默认主题的示例将变成:

## Commented out, we don't call this
# library(cowplot)

iris1 <- ggplot(iris, aes(x = Species, y = Sepal.Length)) +
  geom_boxplot()

iris2 <- ggplot(iris, aes(x = Sepal.Length, fill = Species)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = c(0.8, 0.8))

cowplot::plot_grid(iris1, iris2, labels = "AUTO")

更新:

从cowplot 1.0开始,默认的ggplot2主题不再更改。 从ggplot2 3.0.0开始,可以直接对图进行标记,参见这里的示例。