我想使用ggplot2包并排放置两个图,即执行par(mfrow=c(1,2))的等效操作。

例如,我想让下面两个图以相同的比例并排显示。

x <- rnorm(100)
eps <- rnorm(100,0,.2)
qplot(x,3*x+eps)
qplot(x,2*x+eps)

我需要把它们放到同一个数据帧里吗?

qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

当前回答

使用重塑包可以完成如下操作。

library(ggplot2)
wide <- data.frame(x = rnorm(100), eps = rnorm(100, 0, .2))
wide$first <- with(wide, 3 * x + eps)
wide$second <- with(wide, 2 * x + eps)
long <- melt(wide, id.vars = c("x", "eps"))
ggplot(long, aes(x = x, y = value)) + geom_smooth() + geom_point() + facet_grid(.~ variable)

其他回答

您可以使用温斯顿张的R食谱下面的多绘图函数

multiplot(plot1, plot2, cols=2)

multiplot <- function(..., plotlist=NULL, cols) {
    require(grid)

    # Make a list from the ... arguments and plotlist
    plots <- c(list(...), plotlist)

    numPlots = length(plots)

    # Make the panel
    plotCols = cols                          # Number of columns of plots
    plotRows = ceiling(numPlots/plotCols) # Number of rows needed, calculated from # of cols

    # Set up the page
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(plotRows, plotCols)))
    vplayout <- function(x, y)
        viewport(layout.pos.row = x, layout.pos.col = y)

    # Make each plot, in the correct location
    for (i in 1:numPlots) {
        curRow = ceiling(i/plotCols)
        curCol = (i-1) %% plotCols + 1
        print(plots[[i]], vp = vplayout(curRow, curCol ))
    }

}

更新:这个答案非常古老。gridExtra::grid.arrange()现在是推荐的方法。 我把这个留在这里,也许有用。


Stephen Turner在Getting Genetics Done博客上发布了arrange()函数(参见文章中的应用说明)

vp.layout <- function(x, y) viewport(layout.pos.row=x, layout.pos.col=y)
arrange <- function(..., nrow=NULL, ncol=NULL, as.table=FALSE) {
 dots <- list(...)
 n <- length(dots)
 if(is.null(nrow) & is.null(ncol)) { nrow = floor(n/2) ; ncol = ceiling(n/nrow)}
 if(is.null(nrow)) { nrow = ceiling(n/ncol)}
 if(is.null(ncol)) { ncol = ceiling(n/nrow)}
        ## NOTE see n2mfrow in grDevices for possible alternative
grid.newpage()
pushViewport(viewport(layout=grid.layout(nrow,ncol) ) )
 ii.p <- 1
 for(ii.row in seq(1, nrow)){
 ii.table.row <- ii.row 
 if(as.table) {ii.table.row <- nrow - ii.table.row + 1}
  for(ii.col in seq(1, ncol)){
   ii.table <- ii.p
   if(ii.p > n) break
   print(dots[[ii.table]], vp=vp.layout(ii.table.row, ii.col))
   ii.p <- ii.p + 1
  }
 }
}

还可以考虑ggpubr包中的ggarrange。它有很多好处,包括在情节之间对齐轴和将常见图例合并为一个图例的选项。

cowplot软件包以适合出版的方式为您提供了一种很好的方法。

x <- rnorm(100)
eps <- rnorm(100,0,.2)
A = qplot(x,3*x+eps, geom = c("point", "smooth"))+theme_gray()
B = qplot(x,2*x+eps, geom = c("point", "smooth"))+theme_gray()
cowplot::plot_grid(A, B, labels = c("A", "B"), align = "v")

如果您希望使用循环绘制多个ggplot图(例如:使用循环在ggplot中创建具有不同y轴值的多个图),上述解决方案可能不太有效,这是分析未知(或大型)数据集的理想步骤(例如,当您希望绘制数据集中所有变量的计数时)。

下面的代码展示了如何使用上面提到的“multiplot()”来实现这一点,其源代码在这里:http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2):

plotAllCounts <- function (dt){   
  plots <- list();
  for(i in 1:ncol(dt)) {
    strX = names(dt)[i]
    print(sprintf("%i: strX = %s", i, strX))
    plots[[i]] <- ggplot(dt) + xlab(strX) +
      geom_point(aes_string(strX),stat="count")
  }

  columnsToPlot <- floor(sqrt(ncol(dt)))
  multiplot(plotlist = plots, cols = columnsToPlot)
}

现在运行函数-以获取在一页上使用ggplot打印的所有变量的Counts

dt = ggplot2::diamonds
plotAllCounts(dt)

需要注意的一点是: 在上面的代码中使用aes(get(strX)),而不是aes_string(strX)将不会绘制所需的图形,这是在处理ggplot时通常在循环中使用的。相反,它会多次绘制最后一个图形。我还没有弄清楚为什么-它可能必须做aes和aes_string在ggplot中被调用。

除此之外,希望你会发现这个函数有用。