我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。

我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。


当前回答

我使用了一个非常简单的函数来计时代码执行的一部分:

import time
def timing():
    start_time = time.time()
    return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))

要使用它,只需在代码之前调用它来度量以检索函数计时,然后在代码之后调用带有注释的函数。时间将显示在评论前面。例如:

t = timing()
train = pd.read_csv('train.csv',
                        dtype={
                            'id': str,
                            'vendor_id': str,
                            'pickup_datetime': str,
                            'dropoff_datetime': str,
                            'passenger_count': int,
                            'pickup_longitude': np.float64,
                            'pickup_latitude': np.float64,
                            'dropoff_longitude': np.float64,
                            'dropoff_latitude': np.float64,
                            'store_and_fwd_flag': str,
                            'trip_duration': int,
                        },
                        parse_dates = ['pickup_datetime', 'dropoff_datetime'],
                   )
t("Loaded {} rows data from 'train'".format(len(train)))

然后输出将如下所示:

[9.35s] Loaded 1458644 rows data from 'train'

其他回答

使用line_profiler。

line_profiler将描述单个代码行执行所需的时间。分析器通过Cython在C语言中实现,以减少分析开销。

from line_profiler import LineProfiler
import random

def do_stuff(numbers):
    s = sum(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

结果将是:

Timer unit: 1e-06 s

Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_stuff(numbers):
     5         1           10     10.0      1.5      s = sum(numbers)
     6         1          186    186.0     28.7      l = [numbers[i]/43 for i in range(len(numbers))]
     7         1          453    453.0     69.8      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

对于使用Jupyter笔记本的数据人员

在单元格中,可以使用Jupyter的%%time魔术命令来测量执行时间:

%%time
[ x**2 for x in range(10000)]

输出

CPU times: user 4.54 ms, sys: 0 ns, total: 4.54 ms
Wall time: 4.12 ms

这将仅捕获特定单元的执行时间。如果您想捕获整个笔记本(即程序)的执行时间,可以在同一目录中创建一个新笔记本,并在新笔记本中执行所有单元格:

假设上面的笔记本名为example_notebook.ipynb。在同一目录中的新笔记本中:

# Convert your notebook to a .py script:
!jupyter nbconvert --to script example_notebook.ipynb

# Run the example_notebook with -t flag for time
%run -t example_notebook

输出

IPython CPU timings (estimated):
  User   :       0.00 s.
  System :       0.00 s.
Wall time:       0.00 s.

Python程序执行度量的时间可能不一致,具体取决于:

可以使用不同的算法评估相同的程序运行时间因算法而异运行时间因实现而异运行时间因计算机而异基于小输入,运行时间不可预测

这是因为最有效的方法是使用“增长顺序”,并学习大“O”符号来正确地执行。

无论如何,您可以尝试使用以下简单算法来评估任何Python程序在每秒特定机器计数步骤中的性能:使其适应您想要评估的计划

import time

now = time.time()
future = now + 10
step = 4 # Why 4 steps? Because until here already four operations executed
while time.time() < future:
    step += 3 # Why 3 again? Because a while loop executes one comparison and one plus equal statement
step += 4 # Why 3 more? Because one comparison starting while when time is over plus the final assignment of step + 1 and print statement
print(str(int(step / 10)) + " steps per second")

time.clock在Python 3.3中已被弃用,并将从Python 3.8中删除:请改用time.perf_counter或time.prrocess_time

import time
start_time = time.perf_counter ()
for x in range(1, 100):
    print(x)
end_time = time.perf_counter ()
print(end_time - start_time, "seconds")

您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。

以下是如何从命令行使用cProfile评测脚本的示例:

$ python -m cProfile euler048.py

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}