我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。

我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。


当前回答

Timeit是Python中的一个类,用于计算小代码块的执行时间。

Default_timer是此类中的一个方法,用于测量墙上时钟计时,而不是CPU执行时间。因此,其他进程执行可能会对此产生干扰。因此,它对小代码块很有用。

代码示例如下:

from timeit import default_timer as timer

start= timer()

# Some logic

end = timer()

print("Time taken:", end-start)

其他回答

有一个timeit模块,可用于对Python代码的执行时间进行计时。

它在Python文档26.6中有详细的文档和示例。timeit-测量小代码片段的执行时间。

在Linux或Unix中:

$ time python yourprogram.py

在Windows中,请参阅StackOverflow问题:如何在Windows命令行上测量命令的执行时间?

对于更详细的输出,

$ time -v python yourprogram.py
    Command being timed: "python3 yourprogram.py"
    User time (seconds): 0.08
    System time (seconds): 0.02
    Percent of CPU this job got: 98%
    Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.10
    Average shared text size (kbytes): 0
    Average unshared data size (kbytes): 0
    Average stack size (kbytes): 0
    Average total size (kbytes): 0
    Maximum resident set size (kbytes): 9480
    Average resident set size (kbytes): 0
    Major (requiring I/O) page faults: 0
    Minor (reclaiming a frame) page faults: 1114
    Voluntary context switches: 0
    Involuntary context switches: 22
    Swaps: 0
    File system inputs: 0
    File system outputs: 0
    Socket messages sent: 0
    Socket messages received: 0
    Signals delivered: 0
    Page size (bytes): 4096
    Exit status: 0

对于函数,我建议使用我创建的这个简单的修饰符。

def timeit(method):
    def timed(*args, **kwargs):
        ts = time.time()
        result = method(*args, **kwargs)
        te = time.time()
        if 'log_time' in kwargs:
            name = kwargs.get('log_name', method.__name__.upper())
            kwargs['log_time'][name] = int((te - ts) * 1000)
        else:
            print('%r  %2.22f ms' % (method.__name__, (te - ts) * 1000))
        return result
    return timed

@timeit
def foo():
    do_some_work()

# foo()
# 'foo'  0.000953 ms

根据这个答案,创建了一个简单但方便的工具。

import time
from datetime import timedelta

def start_time_measure(message=None):
    if message:
        print(message)
    return time.monotonic()

def end_time_measure(start_time, print_prefix=None):
    end_time = time.monotonic()
    if print_prefix:
        print(print_prefix + str(timedelta(seconds=end_time - start_time)))
    return end_time

用法:

total_start_time = start_time_measure()    
start_time = start_time_measure('Doing something...')
# Do something
end_time_measure(start_time, 'Done in: ')
start_time = start_time_measure('Doing something else...')
# Do something else
end_time_measure(start_time, 'Done in: ')
end_time_measure(total_start_time, 'Total time: ')

输出:

Doing something...
Done in: 0:00:01.218000
Doing something else...
Done in: 0:00:01.313000
Total time: 0:00:02.672000

您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。

以下是如何从命令行使用cProfile评测脚本的示例:

$ python -m cProfile euler048.py

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}