我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
对于函数,我建议使用我创建的这个简单的修饰符。
def timeit(method):
def timed(*args, **kwargs):
ts = time.time()
result = method(*args, **kwargs)
te = time.time()
if 'log_time' in kwargs:
name = kwargs.get('log_name', method.__name__.upper())
kwargs['log_time'][name] = int((te - ts) * 1000)
else:
print('%r %2.22f ms' % (method.__name__, (te - ts) * 1000))
return result
return timed
@timeit
def foo():
do_some_work()
# foo()
# 'foo' 0.000953 ms
其他回答
根据这个答案,创建了一个简单但方便的工具。
import time
from datetime import timedelta
def start_time_measure(message=None):
if message:
print(message)
return time.monotonic()
def end_time_measure(start_time, print_prefix=None):
end_time = time.monotonic()
if print_prefix:
print(print_prefix + str(timedelta(seconds=end_time - start_time)))
return end_time
用法:
total_start_time = start_time_measure()
start_time = start_time_measure('Doing something...')
# Do something
end_time_measure(start_time, 'Done in: ')
start_time = start_time_measure('Doing something else...')
# Do something else
end_time_measure(start_time, 'Done in: ')
end_time_measure(total_start_time, 'Total time: ')
输出:
Doing something...
Done in: 0:00:01.218000
Doing something else...
Done in: 0:00:01.313000
Total time: 0:00:02.672000
这是获取程序运行时间的最简单方法:
在程序末尾编写以下代码。
import time
print(time.clock())
我尝试使用以下脚本找到时间差。
import time
start_time = time.perf_counter()
[main code here]
print (time.perf_counter() - start_time, "seconds")
您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。
以下是如何从命令行使用cProfile评测脚本的示例:
$ python -m cProfile euler048.py
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}
使用line_profiler。
line_profiler将描述单个代码行执行所需的时间。分析器通过Cython在C语言中实现,以减少分析开销。
from line_profiler import LineProfiler
import random
def do_stuff(numbers):
s = sum(numbers)
l = [numbers[i]/43 for i in range(len(numbers))]
m = ['hello'+str(numbers[i]) for i in range(len(numbers))]
numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()
结果将是:
Timer unit: 1e-06 s
Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4 def do_stuff(numbers):
5 1 10 10.0 1.5 s = sum(numbers)
6 1 186 186.0 28.7 l = [numbers[i]/43 for i in range(len(numbers))]
7 1 453 453.0 69.8 m = ['hello'+str(numbers[i]) for i in range(len(numbers))]