我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。

我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。


当前回答

对于函数,我建议使用我创建的这个简单的修饰符。

def timeit(method):
    def timed(*args, **kwargs):
        ts = time.time()
        result = method(*args, **kwargs)
        te = time.time()
        if 'log_time' in kwargs:
            name = kwargs.get('log_name', method.__name__.upper())
            kwargs['log_time'][name] = int((te - ts) * 1000)
        else:
            print('%r  %2.22f ms' % (method.__name__, (te - ts) * 1000))
        return result
    return timed

@timeit
def foo():
    do_some_work()

# foo()
# 'foo'  0.000953 ms

其他回答

我很喜欢保罗·麦奎尔的答案,但我使用的是Python 3。因此,对于感兴趣的人来说:这里是他在*nix上使用Python 3的答案的修改(我想,在Windows下,应该使用clock()而不是time()):

#python3
import atexit
from time import time, strftime, localtime
from datetime import timedelta

def secondsToStr(elapsed=None):
    if elapsed is None:
        return strftime("%Y-%m-%d %H:%M:%S", localtime())
    else:
        return str(timedelta(seconds=elapsed))

def log(s, elapsed=None):
    line = "="*40
    print(line)
    print(secondsToStr(), '-', s)
    if elapsed:
        print("Elapsed time:", elapsed)
    print(line)
    print()

def endlog():
    end = time()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

start = time()
atexit.register(endlog)
log("Start Program")

如果你觉得这很有用,你仍然应该投票给他的答案,而不是这一个,因为他做了大部分工作;)。

我在查找两种不同方法的运行时间时遇到的问题,这两种方法用于查找所有<=一个数的素数。当在程序中进行用户输入时。

错误的方法

#Sample input for a number 20 
#Sample output [2, 3, 5, 7, 11, 13, 17, 19]
#Total Running time = 0.634 seconds

import time

start_time = time.time()

#Method 1 to find all the prime numbers <= a Number

# Function to check whether a number is prime or not.
def prime_no(num):
if num<2:
    return False
else:
    for i in range(2, num//2+1):
        if num % i == 0:
            return False
    return True

#To print all the values <= n
def Prime_under_num(n):
    a = [2]
    if n <2:
        print("None")
    elif n==2:
        print(2)
    else:
"Neglecting all even numbers as even numbers won't be prime in order to reduce the time complexity."
        for i in range(3, n+1, 2):   
            if prime_no(i):
                a.append(i)
        print(a)


"When Method 1 is only used outputs of running time for different inputs"
#Total Running time = 2.73761 seconds #n = 100
#Total Running time = 3.14781 seconds #n = 1000
#Total Running time = 8.69278 seconds #n = 10000
#Total Running time = 18.73701 seconds #n = 100000

#Method 2 to find all the prime numbers <= a Number

def Prime_under_num(n):
    a = [2]
    if n <2:
        print("None")
    elif n==2:
        print(2)
    else:
        for i in range(3, n+1, 2):   
            if n%i ==0:
                pass
            else:
                a.append(i)
        print(a)

"When Method 2 is only used outputs of running time for different inputs"
# Total Running time = 2.75935 seconds #n = 100
# Total Running time = 2.86332 seconds #n = 1000
# Total Running time = 4.59884 seconds #n = 10000
# Total Running time = 8.55057 seconds #n = 100000

if __name__ == "__main__" :
    n = int(input())
    Prime_under_num(n)
    print("Total Running time = {:.5f} seconds".format(time.time() - start_time))

上述所有情况下获得的不同运行时间都是错误的。对于我们正在接受输入的问题,我们必须在接受输入后才开始计时。这里,用户键入输入所花费的时间也与运行时间一起计算。

正确的方法

我们必须从开头删除start_time=time.time()并将其添加到主块中。

if __name__ == "__main__" :
    n = int(input())
    start_time = time.time()
    Prime_under_num(n)
    print("Total Running time = {:.3f} seconds".format(time.time() - start_time))

因此,两种方法单独使用时的输出如下:-

# Method 1

# Total Running time = 0.00159 seconds #n = 100
# Total Running time = 0.00506 seconds #n = 1000
# Total Running time = 0.22987 seconds #n = 10000
# Total Running time = 18.55819 seconds #n = 100000

# Method 2

# Total Running time = 0.00011 seconds #n = 100
# Total Running time = 0.00118 seconds #n = 1000
# Total Running time = 0.00302 seconds #n = 10000
# Total Running time = 0.01450 seconds #n = 100000

现在我们可以看到,与错误方法相比,总运行时间有显著差异。即使方法2在两种方法中的性能优于方法1,但第一种方法(错误方法)是错误的。

对于函数,我建议使用我创建的这个简单的修饰符。

def timeit(method):
    def timed(*args, **kwargs):
        ts = time.time()
        result = method(*args, **kwargs)
        te = time.time()
        if 'log_time' in kwargs:
            name = kwargs.get('log_name', method.__name__.upper())
            kwargs['log_time'][name] = int((te - ts) * 1000)
        else:
            print('%r  %2.22f ms' % (method.__name__, (te - ts) * 1000))
        return result
    return timed

@timeit
def foo():
    do_some_work()

# foo()
# 'foo'  0.000953 ms

您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。

以下是如何从命令行使用cProfile评测脚本的示例:

$ python -m cProfile euler048.py

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}

我认为这是最好和最简单的方法:

from time import monotonic

start_time = monotonic()
# something
print(f"Run time {monotonic() - start_time} seconds")

或与装饰师一起:

from time import monotonic
    
def record_time(function):
    def wrap(*args, **kwargs):
        start_time = monotonic()
        function_return = function(*args, **kwargs)
        print(f"Run time {monotonic() - start_time} seconds")
        return function_return
    return wrap

@record_time
def your_function():
    # something