我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
对于使用Jupyter笔记本的数据人员
在单元格中,可以使用Jupyter的%%time魔术命令来测量执行时间:
%%time
[ x**2 for x in range(10000)]
输出
CPU times: user 4.54 ms, sys: 0 ns, total: 4.54 ms
Wall time: 4.12 ms
这将仅捕获特定单元的执行时间。如果您想捕获整个笔记本(即程序)的执行时间,可以在同一目录中创建一个新笔记本,并在新笔记本中执行所有单元格:
假设上面的笔记本名为example_notebook.ipynb。在同一目录中的新笔记本中:
# Convert your notebook to a .py script:
!jupyter nbconvert --to script example_notebook.ipynb
# Run the example_notebook with -t flag for time
%run -t example_notebook
输出
IPython CPU timings (estimated):
User : 0.00 s.
System : 0.00 s.
Wall time: 0.00 s.
其他回答
您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。
以下是如何从命令行使用cProfile评测脚本的示例:
$ python -m cProfile euler048.py
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}
对于函数,我建议使用我创建的这个简单的修饰符。
def timeit(method):
def timed(*args, **kwargs):
ts = time.time()
result = method(*args, **kwargs)
te = time.time()
if 'log_time' in kwargs:
name = kwargs.get('log_name', method.__name__.upper())
kwargs['log_time'][name] = int((te - ts) * 1000)
else:
print('%r %2.22f ms' % (method.__name__, (te - ts) * 1000))
return result
return timed
@timeit
def foo():
do_some_work()
# foo()
# 'foo' 0.000953 ms
有一个timeit模块,可用于对Python代码的执行时间进行计时。
它在Python文档26.6中有详细的文档和示例。timeit-测量小代码片段的执行时间。
要使用metakermit对Python 2.7的更新答案,您需要单调包。
代码如下:
from datetime import timedelta
from monotonic import monotonic
start_time = monotonic()
end_time = monotonic()
print(timedelta(seconds=end_time - start_time))
在IPython中,“timeit”任何脚本:
def foo():
%run bar.py
timeit foo()