我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。

我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。


当前回答

对于使用Jupyter笔记本的数据人员

在单元格中,可以使用Jupyter的%%time魔术命令来测量执行时间:

%%time
[ x**2 for x in range(10000)]

输出

CPU times: user 4.54 ms, sys: 0 ns, total: 4.54 ms
Wall time: 4.12 ms

这将仅捕获特定单元的执行时间。如果您想捕获整个笔记本(即程序)的执行时间,可以在同一目录中创建一个新笔记本,并在新笔记本中执行所有单元格:

假设上面的笔记本名为example_notebook.ipynb。在同一目录中的新笔记本中:

# Convert your notebook to a .py script:
!jupyter nbconvert --to script example_notebook.ipynb

# Run the example_notebook with -t flag for time
%run -t example_notebook

输出

IPython CPU timings (estimated):
  User   :       0.00 s.
  System :       0.00 s.
Wall time:       0.00 s.

其他回答

您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。

以下是如何从命令行使用cProfile评测脚本的示例:

$ python -m cProfile euler048.py

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}

time.clock()

自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),这取决于您的需求,以具有定义良好的行为。

time.perf_counter()

返回性能计数器的值(以秒为单位),即具有最高可用分辨率的时钟来测量短路期间它包括睡眠期间的时间系统范围内。

time.process_time()

返回系统和当前进程的用户CPU时间。它不包括经过的时间在睡眠期间。

start = time.process_time()
... do something
elapsed = (time.process_time() - start)

我定义了以下Python装饰器:

def profile(fct):
  def wrapper(*args, **kw):
    start_time = time.time()
    ret = fct(*args, **kw)
    print("{} {} {} return {} in {} seconds".format(args[0].__class__.__name__,
                                                    args[0].__class__.__module__,
                                                    fct.__name__,
                                                    ret,
                                                    time.time() - start_time))
    return ret
  return wrapper

并将其用于函数或类/方法:

@profile
def main()
   ...
from time import time
start_time = time()
...
end_time = time()
time_taken = end_time - start_time # time_taken is in seconds
hours, rest = divmod(time_taken,3600)
minutes, seconds = divmod(rest, 60)

对于使用Jupyter笔记本的数据人员

在单元格中,可以使用Jupyter的%%time魔术命令来测量执行时间:

%%time
[ x**2 for x in range(10000)]

输出

CPU times: user 4.54 ms, sys: 0 ns, total: 4.54 ms
Wall time: 4.12 ms

这将仅捕获特定单元的执行时间。如果您想捕获整个笔记本(即程序)的执行时间,可以在同一目录中创建一个新笔记本,并在新笔记本中执行所有单元格:

假设上面的笔记本名为example_notebook.ipynb。在同一目录中的新笔记本中:

# Convert your notebook to a .py script:
!jupyter nbconvert --to script example_notebook.ipynb

# Run the example_notebook with -t flag for time
%run -t example_notebook

输出

IPython CPU timings (estimated):
  User   :       0.00 s.
  System :       0.00 s.
Wall time:       0.00 s.