我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。

我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。


当前回答

Python中最简单的方法:

import time
start_time = time.time()
main()
print("--- %s seconds ---" % (time.time() - start_time))

这假设程序运行至少需要十分之一秒。

打印:

--- 0.764891862869 seconds ---

其他回答

使用line_profiler。

line_profiler将描述单个代码行执行所需的时间。分析器通过Cython在C语言中实现,以减少分析开销。

from line_profiler import LineProfiler
import random

def do_stuff(numbers):
    s = sum(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

结果将是:

Timer unit: 1e-06 s

Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_stuff(numbers):
     5         1           10     10.0      1.5      s = sum(numbers)
     6         1          186    186.0     28.7      l = [numbers[i]/43 for i in range(len(numbers))]
     7         1          453    453.0     69.8      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。

以下是如何从命令行使用cProfile评测脚本的示例:

$ python -m cProfile euler048.py

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}

Timeit是Python中的一个类,用于计算小代码块的执行时间。

Default_timer是此类中的一个方法,用于测量墙上时钟计时,而不是CPU执行时间。因此,其他进程执行可能会对此产生干扰。因此,它对小代码块很有用。

代码示例如下:

from timeit import default_timer as timer

start= timer()

# Some logic

end = timer()

print("Time taken:", end-start)

这是保罗·麦奎尔的回答,对我来说很有用。以防有人在运行这个问题时遇到问题。

import atexit
from time import clock

def reduce(function, iterable, initializer=None):
    it = iter(iterable)
    if initializer is None:
        value = next(it)
    else:
        value = initializer
    for element in it:
        value = function(value, element)
    return value

def secondsToStr(t):
    return "%d:%02d:%02d.%03d" % \
        reduce(lambda ll,b : divmod(ll[0],b) + ll[1:],
            [(t*1000,),1000,60,60])

line = "="*40
def log(s, elapsed=None):
    print (line)
    print (secondsToStr(clock()), '-', s)
    if elapsed:
        print ("Elapsed time:", elapsed)
    print (line)

def endlog():
    end = clock()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

def now():
    return secondsToStr(clock())

def main():
    start = clock()
    atexit.register(endlog)
    log("Start Program")

导入文件后,从程序中调用timing.main()。

我在查找两种不同方法的运行时间时遇到的问题,这两种方法用于查找所有<=一个数的素数。当在程序中进行用户输入时。

错误的方法

#Sample input for a number 20 
#Sample output [2, 3, 5, 7, 11, 13, 17, 19]
#Total Running time = 0.634 seconds

import time

start_time = time.time()

#Method 1 to find all the prime numbers <= a Number

# Function to check whether a number is prime or not.
def prime_no(num):
if num<2:
    return False
else:
    for i in range(2, num//2+1):
        if num % i == 0:
            return False
    return True

#To print all the values <= n
def Prime_under_num(n):
    a = [2]
    if n <2:
        print("None")
    elif n==2:
        print(2)
    else:
"Neglecting all even numbers as even numbers won't be prime in order to reduce the time complexity."
        for i in range(3, n+1, 2):   
            if prime_no(i):
                a.append(i)
        print(a)


"When Method 1 is only used outputs of running time for different inputs"
#Total Running time = 2.73761 seconds #n = 100
#Total Running time = 3.14781 seconds #n = 1000
#Total Running time = 8.69278 seconds #n = 10000
#Total Running time = 18.73701 seconds #n = 100000

#Method 2 to find all the prime numbers <= a Number

def Prime_under_num(n):
    a = [2]
    if n <2:
        print("None")
    elif n==2:
        print(2)
    else:
        for i in range(3, n+1, 2):   
            if n%i ==0:
                pass
            else:
                a.append(i)
        print(a)

"When Method 2 is only used outputs of running time for different inputs"
# Total Running time = 2.75935 seconds #n = 100
# Total Running time = 2.86332 seconds #n = 1000
# Total Running time = 4.59884 seconds #n = 10000
# Total Running time = 8.55057 seconds #n = 100000

if __name__ == "__main__" :
    n = int(input())
    Prime_under_num(n)
    print("Total Running time = {:.5f} seconds".format(time.time() - start_time))

上述所有情况下获得的不同运行时间都是错误的。对于我们正在接受输入的问题,我们必须在接受输入后才开始计时。这里,用户键入输入所花费的时间也与运行时间一起计算。

正确的方法

我们必须从开头删除start_time=time.time()并将其添加到主块中。

if __name__ == "__main__" :
    n = int(input())
    start_time = time.time()
    Prime_under_num(n)
    print("Total Running time = {:.3f} seconds".format(time.time() - start_time))

因此,两种方法单独使用时的输出如下:-

# Method 1

# Total Running time = 0.00159 seconds #n = 100
# Total Running time = 0.00506 seconds #n = 1000
# Total Running time = 0.22987 seconds #n = 10000
# Total Running time = 18.55819 seconds #n = 100000

# Method 2

# Total Running time = 0.00011 seconds #n = 100
# Total Running time = 0.00118 seconds #n = 1000
# Total Running time = 0.00302 seconds #n = 10000
# Total Running time = 0.01450 seconds #n = 100000

现在我们可以看到,与错误方法相比,总运行时间有显著差异。即使方法2在两种方法中的性能优于方法1,但第一种方法(错误方法)是错误的。