我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
您只需在Python中执行此操作。没有必要让它变得复杂。
import time
start = time.localtime()
end = time.localtime()
"""Total execution time in minutes$ """
print(end.tm_min - start.tm_min)
"""Total execution time in seconds$ """
print(end.tm_sec - start.tm_sec)
其他回答
使用line_profiler。
line_profiler将描述单个代码行执行所需的时间。分析器通过Cython在C语言中实现,以减少分析开销。
from line_profiler import LineProfiler
import random
def do_stuff(numbers):
s = sum(numbers)
l = [numbers[i]/43 for i in range(len(numbers))]
m = ['hello'+str(numbers[i]) for i in range(len(numbers))]
numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()
结果将是:
Timer unit: 1e-06 s
Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4 def do_stuff(numbers):
5 1 10 10.0 1.5 s = sum(numbers)
6 1 186 186.0 28.7 l = [numbers[i]/43 for i in range(len(numbers))]
7 1 453 453.0 69.8 m = ['hello'+str(numbers[i]) for i in range(len(numbers))]
要使用metakermit对Python 2.7的更新答案,您需要单调包。
代码如下:
from datetime import timedelta
from monotonic import monotonic
start_time = monotonic()
end_time = monotonic()
print(timedelta(seconds=end_time - start_time))
首先,以管理员身份打开命令提示符(CMD)并在那里键入,安装人性化的软件包-pip安装人性化
代码:
from humanfriendly import format_timespan
import time
begin_time = time.time()
# Put your code here
end_time = time.time() - begin_time
print("Total execution time: ", format_timespan(end_time))
输出:
我使用了一个非常简单的函数来计时代码执行的一部分:
import time
def timing():
start_time = time.time()
return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))
要使用它,只需在代码之前调用它来度量以检索函数计时,然后在代码之后调用带有注释的函数。时间将显示在评论前面。例如:
t = timing()
train = pd.read_csv('train.csv',
dtype={
'id': str,
'vendor_id': str,
'pickup_datetime': str,
'dropoff_datetime': str,
'passenger_count': int,
'pickup_longitude': np.float64,
'pickup_latitude': np.float64,
'dropoff_longitude': np.float64,
'dropoff_latitude': np.float64,
'store_and_fwd_flag': str,
'trip_duration': int,
},
parse_dates = ['pickup_datetime', 'dropoff_datetime'],
)
t("Loaded {} rows data from 'train'".format(len(train)))
然后输出将如下所示:
[9.35s] Loaded 1458644 rows data from 'train'
您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。
以下是如何从命令行使用cProfile评测脚本的示例:
$ python -m cProfile euler048.py
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}