我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。

我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。


当前回答

使用line_profiler。

line_profiler将描述单个代码行执行所需的时间。分析器通过Cython在C语言中实现,以减少分析开销。

from line_profiler import LineProfiler
import random

def do_stuff(numbers):
    s = sum(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

结果将是:

Timer unit: 1e-06 s

Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_stuff(numbers):
     5         1           10     10.0      1.5      s = sum(numbers)
     6         1          186    186.0     28.7      l = [numbers[i]/43 for i in range(len(numbers))]
     7         1          453    453.0     69.8      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

其他回答

有一个timeit模块,可用于对Python代码的执行时间进行计时。

它在Python文档26.6中有详细的文档和示例。timeit-测量小代码片段的执行时间。

在Linux或Unix中:

$ time python yourprogram.py

在Windows中,请参阅StackOverflow问题:如何在Windows命令行上测量命令的执行时间?

对于更详细的输出,

$ time -v python yourprogram.py
    Command being timed: "python3 yourprogram.py"
    User time (seconds): 0.08
    System time (seconds): 0.02
    Percent of CPU this job got: 98%
    Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.10
    Average shared text size (kbytes): 0
    Average unshared data size (kbytes): 0
    Average stack size (kbytes): 0
    Average total size (kbytes): 0
    Maximum resident set size (kbytes): 9480
    Average resident set size (kbytes): 0
    Major (requiring I/O) page faults: 0
    Minor (reclaiming a frame) page faults: 1114
    Voluntary context switches: 0
    Involuntary context switches: 22
    Swaps: 0
    File system inputs: 0
    File system outputs: 0
    Socket messages sent: 0
    Socket messages received: 0
    Signals delivered: 0
    Page size (bytes): 4096
    Exit status: 0

我认为这是最好和最简单的方法:

from time import monotonic

start_time = monotonic()
# something
print(f"Run time {monotonic() - start_time} seconds")

或与装饰师一起:

from time import monotonic
    
def record_time(function):
    def wrap(*args, **kwargs):
        start_time = monotonic()
        function_return = function(*args, **kwargs)
        print(f"Run time {monotonic() - start_time} seconds")
        return function_return
    return wrap

@record_time
def your_function():
    # something

我在很多地方都遇到了同样的问题,所以我创建了一个方便的套装占星术。你可以用pip安装钟表,然后以优雅的方式安装:

from horology import Timing

with Timing(name='Important calculations: '):
    prepare()
    do_your_stuff()
    finish_sth()

将输出:

Important calculations: 12.43 ms

或者更简单(如果你有一个功能):

from horology import timed

@timed
def main():
    ...

将输出:

main: 7.12 h

它负责单位和舍入。它适用于python 3.6或更高版本。

我使用了一个非常简单的函数来计时代码执行的一部分:

import time
def timing():
    start_time = time.time()
    return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))

要使用它,只需在代码之前调用它来度量以检索函数计时,然后在代码之后调用带有注释的函数。时间将显示在评论前面。例如:

t = timing()
train = pd.read_csv('train.csv',
                        dtype={
                            'id': str,
                            'vendor_id': str,
                            'pickup_datetime': str,
                            'dropoff_datetime': str,
                            'passenger_count': int,
                            'pickup_longitude': np.float64,
                            'pickup_latitude': np.float64,
                            'dropoff_longitude': np.float64,
                            'dropoff_latitude': np.float64,
                            'store_and_fwd_flag': str,
                            'trip_duration': int,
                        },
                        parse_dates = ['pickup_datetime', 'dropoff_datetime'],
                   )
t("Loaded {} rows data from 'train'".format(len(train)))

然后输出将如下所示:

[9.35s] Loaded 1458644 rows data from 'train'