我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
Python程序执行度量的时间可能不一致,具体取决于:
可以使用不同的算法评估相同的程序运行时间因算法而异运行时间因实现而异运行时间因计算机而异基于小输入,运行时间不可预测
这是因为最有效的方法是使用“增长顺序”,并学习大“O”符号来正确地执行。
无论如何,您可以尝试使用以下简单算法来评估任何Python程序在每秒特定机器计数步骤中的性能:使其适应您想要评估的计划
import time
now = time.time()
future = now + 10
step = 4 # Why 4 steps? Because until here already four operations executed
while time.time() < future:
step += 3 # Why 3 again? Because a while loop executes one comparison and one plus equal statement
step += 4 # Why 3 more? Because one comparison starting while when time is over plus the final assignment of step + 1 and print statement
print(str(int(step / 10)) + " steps per second")
其他回答
我使用了一个非常简单的函数来计时代码执行的一部分:
import time
def timing():
start_time = time.time()
return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))
要使用它,只需在代码之前调用它来度量以检索函数计时,然后在代码之后调用带有注释的函数。时间将显示在评论前面。例如:
t = timing()
train = pd.read_csv('train.csv',
dtype={
'id': str,
'vendor_id': str,
'pickup_datetime': str,
'dropoff_datetime': str,
'passenger_count': int,
'pickup_longitude': np.float64,
'pickup_latitude': np.float64,
'dropoff_longitude': np.float64,
'dropoff_latitude': np.float64,
'store_and_fwd_flag': str,
'trip_duration': int,
},
parse_dates = ['pickup_datetime', 'dropoff_datetime'],
)
t("Loaded {} rows data from 'train'".format(len(train)))
然后输出将如下所示:
[9.35s] Loaded 1458644 rows data from 'train'
根据这个答案,创建了一个简单但方便的工具。
import time
from datetime import timedelta
def start_time_measure(message=None):
if message:
print(message)
return time.monotonic()
def end_time_measure(start_time, print_prefix=None):
end_time = time.monotonic()
if print_prefix:
print(print_prefix + str(timedelta(seconds=end_time - start_time)))
return end_time
用法:
total_start_time = start_time_measure()
start_time = start_time_measure('Doing something...')
# Do something
end_time_measure(start_time, 'Done in: ')
start_time = start_time_measure('Doing something else...')
# Do something else
end_time_measure(start_time, 'Done in: ')
end_time_measure(total_start_time, 'Total time: ')
输出:
Doing something...
Done in: 0:00:01.218000
Doing something else...
Done in: 0:00:01.313000
Total time: 0:00:02.672000
以下代码段以可读的<HH:MM:SS>格式打印经过的时间。
import time
from datetime import timedelta
start_time = time.time()
#
# Perform lots of computations.
#
elapsed_time_secs = time.time() - start_time
msg = "Execution took: %s secs (Wall clock time)" % timedelta(seconds=round(elapsed_time_secs))
print(msg)
您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。
以下是如何从命令行使用cProfile评测脚本的示例:
$ python -m cProfile euler048.py
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}
Python程序执行度量的时间可能不一致,具体取决于:
可以使用不同的算法评估相同的程序运行时间因算法而异运行时间因实现而异运行时间因计算机而异基于小输入,运行时间不可预测
这是因为最有效的方法是使用“增长顺序”,并学习大“O”符号来正确地执行。
无论如何,您可以尝试使用以下简单算法来评估任何Python程序在每秒特定机器计数步骤中的性能:使其适应您想要评估的计划
import time
now = time.time()
future = now + 10
step = 4 # Why 4 steps? Because until here already four operations executed
while time.time() < future:
step += 3 # Why 3 again? Because a while loop executes one comparison and one plus equal statement
step += 4 # Why 3 more? Because one comparison starting while when time is over plus the final assignment of step + 1 and print statement
print(str(int(step / 10)) + " steps per second")