我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
Python程序执行度量的时间可能不一致,具体取决于:
可以使用不同的算法评估相同的程序运行时间因算法而异运行时间因实现而异运行时间因计算机而异基于小输入,运行时间不可预测
这是因为最有效的方法是使用“增长顺序”,并学习大“O”符号来正确地执行。
无论如何,您可以尝试使用以下简单算法来评估任何Python程序在每秒特定机器计数步骤中的性能:使其适应您想要评估的计划
import time
now = time.time()
future = now + 10
step = 4 # Why 4 steps? Because until here already four operations executed
while time.time() < future:
step += 3 # Why 3 again? Because a while loop executes one comparison and one plus equal statement
step += 4 # Why 3 more? Because one comparison starting while when time is over plus the final assignment of step + 1 and print statement
print(str(int(step / 10)) + " steps per second")
其他回答
以下代码段以可读的<HH:MM:SS>格式打印经过的时间。
import time
from datetime import timedelta
start_time = time.time()
#
# Perform lots of computations.
#
elapsed_time_secs = time.time() - start_time
msg = "Execution took: %s secs (Wall clock time)" % timedelta(seconds=round(elapsed_time_secs))
print(msg)
只需使用timeit模块。它同时适用于Python 2和Python 3。
import timeit
start = timeit.default_timer()
# All the program statements
stop = timeit.default_timer()
execution_time = stop - start
print("Program Executed in "+str(execution_time)) # It returns time in seconds
它在几秒钟内返回,您可以获得执行时间。这很简单,但您应该在启动程序执行的主函数中编写这些。如果您想获得执行时间,即使在出现错误时,也可以将参数“Start”设置为它,并在那里进行如下计算:
def sample_function(start,**kwargs):
try:
# Your statements
except:
# except statements run when your statements raise an exception
stop = timeit.default_timer()
execution_time = stop - start
print("Program executed in " + str(execution_time))
对于函数,我建议使用我创建的这个简单的修饰符。
def timeit(method):
def timed(*args, **kwargs):
ts = time.time()
result = method(*args, **kwargs)
te = time.time()
if 'log_time' in kwargs:
name = kwargs.get('log_name', method.__name__.upper())
kwargs['log_time'][name] = int((te - ts) * 1000)
else:
print('%r %2.22f ms' % (method.__name__, (te - ts) * 1000))
return result
return timed
@timeit
def foo():
do_some_work()
# foo()
# 'foo' 0.000953 ms
这是保罗·麦奎尔的回答,对我来说很有用。以防有人在运行这个问题时遇到问题。
import atexit
from time import clock
def reduce(function, iterable, initializer=None):
it = iter(iterable)
if initializer is None:
value = next(it)
else:
value = initializer
for element in it:
value = function(value, element)
return value
def secondsToStr(t):
return "%d:%02d:%02d.%03d" % \
reduce(lambda ll,b : divmod(ll[0],b) + ll[1:],
[(t*1000,),1000,60,60])
line = "="*40
def log(s, elapsed=None):
print (line)
print (secondsToStr(clock()), '-', s)
if elapsed:
print ("Elapsed time:", elapsed)
print (line)
def endlog():
end = clock()
elapsed = end-start
log("End Program", secondsToStr(elapsed))
def now():
return secondsToStr(clock())
def main():
start = clock()
atexit.register(endlog)
log("Start Program")
导入文件后,从程序中调用timing.main()。
您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。
以下是如何从命令行使用cProfile评测脚本的示例:
$ python -m cProfile euler048.py
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}