我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
from time import time
start_time = time()
...
end_time = time()
time_taken = end_time - start_time # time_taken is in seconds
hours, rest = divmod(time_taken,3600)
minutes, seconds = divmod(rest, 60)
其他回答
您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。
以下是如何从命令行使用cProfile评测脚本的示例:
$ python -m cProfile euler048.py
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}
我在很多地方都遇到了同样的问题,所以我创建了一个方便的套装占星术。你可以用pip安装钟表,然后以优雅的方式安装:
from horology import Timing
with Timing(name='Important calculations: '):
prepare()
do_your_stuff()
finish_sth()
将输出:
Important calculations: 12.43 ms
或者更简单(如果你有一个功能):
from horology import timed
@timed
def main():
...
将输出:
main: 7.12 h
它负责单位和舍入。它适用于python 3.6或更高版本。
time.clock在Python 3.3中已被弃用,并将从Python 3.8中删除:请改用time.perf_counter或time.prrocess_time
import time
start_time = time.perf_counter ()
for x in range(1, 100):
print(x)
end_time = time.perf_counter ()
print(end_time - start_time, "seconds")
有一个timeit模块,可用于对Python代码的执行时间进行计时。
它在Python文档26.6中有详细的文档和示例。timeit-测量小代码片段的执行时间。
对于函数,我建议使用我创建的这个简单的修饰符。
def timeit(method):
def timed(*args, **kwargs):
ts = time.time()
result = method(*args, **kwargs)
te = time.time()
if 'log_time' in kwargs:
name = kwargs.get('log_name', method.__name__.upper())
kwargs['log_time'][name] = int((te - ts) * 1000)
else:
print('%r %2.22f ms' % (method.__name__, (te - ts) * 1000))
return result
return timed
@timeit
def foo():
do_some_work()
# foo()
# 'foo' 0.000953 ms