我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
如果你有一个数据帧df,想要添加一个列表new_list作为一个新行到df,你可以简单地做:
df.loc[len(df)] = new_list
如果你想在数据帧df下添加一个新的数据帧new_df,那么你可以使用:
df.append(new_df)
其他回答
你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。
例如:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row
您可以为此连接两个数据框架。我基本上遇到了这个问题,用字符索引(不是数字)向现有的DataFrame添加新行。
因此,我在一个管道()中输入新行数据,并在一个列表中索引。
new_dict = {put input for new row here}
new_list = [put your index here]
new_df = pd.DataFrame(data=new_dict, index=new_list)
df = pd.concat([existing_df, new_df])
您可以使用生成器对象来创建一个Dataframe,这将在列表中更有效地使用内存。
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
要向现有的数据帧添加raw,可以使用append方法。
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])
简单点。通过将一个列表作为输入,该列表将作为一行添加到数据帧中:
import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
res_list = list(map(int, input().split()))
res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)