我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
如果你总是想在最后添加一个新行,使用这个:
df.loc[len(df)] = ['name5', 9, 0]
其他回答
你只需要loc[df]。形状[0]]或loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]
如果你事先知道条目的数量,你应该通过提供索引来预分配空间(从不同的答案中获得数据示例):
import pandas as pd
import numpy as np
# we know we're gonna have 5 rows of data
numberOfRows = 5
# create dataframe
df = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('lib', 'qty1', 'qty2') )
# now fill it up row by row
for x in np.arange(0, numberOfRows):
#loc or iloc both work here since the index is natural numbers
df.loc[x] = [np.random.randint(-1,1) for n in range(3)]
In[23]: df
Out[23]:
lib qty1 qty2
0 -1 -1 -1
1 0 0 0
2 -1 0 -1
3 0 -1 0
4 -1 0 0
速度比较
In[30]: %timeit tryThis() # function wrapper for this answer
In[31]: %timeit tryOther() # function wrapper without index (see, for example, @fred)
1000 loops, best of 3: 1.23 ms per loop
100 loops, best of 3: 2.31 ms per loop
而且,从评论中可以看出,如果尺寸为6000,速度差异会变得更大:
增加数组的大小(12)和行数(500)使 速度上的差异更加显著:313毫秒vs 2.29秒
这不是OP问题的答案,而是一个玩具例子来说明ShikharDua的答案,我觉得非常有用。
虽然这个片段很简单,但在实际数据中,我有1000行和许多列,我希望能够根据不同的列进行分组,然后对多个目标列执行下面的统计。因此,有一种可靠的方法来一次一行地构建数据帧是非常方便的。谢谢你,ShikharDua!
import pandas as pd
BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
'Territory' : ['West','East','South','West','East','South'],
'Product' : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData
columns = ['Customer','Num Unique Products', 'List Unique Products']
rows_list=[]
for name, group in BaseData.groupby('Customer'):
RecordtoAdd={} #initialise an empty dict
RecordtoAdd.update({'Customer' : name}) #
RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})
rows_list.append(RecordtoAdd)
AnalysedData = pd.DataFrame(rows_list)
print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)
如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:
创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。
我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
您可以使用生成器对象来创建一个Dataframe,这将在列表中更有效地使用内存。
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
要向现有的数据帧添加raw,可以使用append方法。
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])