我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:
创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。
我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
其他回答
这将负责向空DataFrame添加一个项。问题是对于第一个索引,df.index.max() == nan:
df = pd.DataFrame(columns=['timeMS', 'accelX', 'accelY', 'accelZ', 'gyroX', 'gyroY', 'gyroZ'])
df.loc[0 if math.isnan(df.index.max()) else df.index.max() + 1] = [x for x in range(7)]
pandas.DataFrame.append
DataFrame。append(self, other, ignore_index=False, verify_integrity=False, sort=False)→'数据帧'
Code
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)
ignore_index设置为True:
df.append(df2, ignore_index=True)
你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。
例如:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
我们经常看到结构df。loc[下标]=…分配给一个数据帧行。Mikhail_Sam发布了包含这个构造以及使用dict并最终创建DataFrame的方法的基准测试。他发现后者是目前为止最快的。
但是如果我们替换df3。loc[i] =…(与预分配的DataFrame)在他的代码df3。值[i] =…时,结果会发生显著变化,因为该方法的执行与使用dict的方法类似。所以我们应该经常使用df。考虑[下标]=…但是请注意,.values有一个从零开始的下标,这可能与DataFrame.index不同。
你只需要loc[df]。形状[0]]或loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]