我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:

创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。

我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。

rows_list = []
for row in input_rows:

        dict1 = {}
        # get input row in dictionary format
        # key = col_name
        dict1.update(blah..) 

        rows_list.append(dict1)

df = pd.DataFrame(rows_list)               

其他回答

initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}

df = pd.DataFrame(initial_data)

df

lib    qty1    qty2
0    1    1    1
1    2    2    2
2    3    3    3
3    4    4    4

val_1 = [10]
val_2 = [14]
val_3 = [20]

df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))

lib    qty1    qty2
0    1    1    1
1    2    2    2
2    3    3    3
3    4    4    4
0    10    14    20

可以使用for循环遍历值,也可以添加值数组。

val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]

df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))

lib    qty1    qty2
0    1    1    1
1    2    2    2
2    3    3    3
3    4    4    4
0    10    14    20
1    11    15    21
2    12    16    22
3    13    17    43

这个代码片段使用字典列表来更新数据帧。它补充了ShikharDua和Mikhail_Sam的答案。

import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
    for y in fruits:
#         print(x, y)
        dict1 = dict([('x',x),('y',y)])
#         print(f'dict 1 {dict1}')
        feat_list.append(dict1)
#         print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

如果你总是想在最后添加一个新行,使用这个:

df.loc[len(df)] = ['name5', 9, 0]

可以使用ignore_index选项将单行追加为字典。

>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
  Animal Color
0    cow  blue
1  horse   red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
  Animal  Color
0    cow   blue
1  horse    red
2  mouse  black

你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。

例如:

def append_row(df, row):
    return pd.concat([
                df, 
                pd.DataFrame([row], columns=row.index)]
           ).reset_index(drop=True)

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})

df = append_row(df, new_row)