我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}
df = pd.DataFrame(initial_data)
df
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
val_1 = [10]
val_2 = [14]
val_3 = [20]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
可以使用for循环遍历值,也可以添加值数组。
val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
1 11 15 21
2 12 16 22
3 13 17 43
其他回答
我想出了一个简单而美好的方法:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
请注意评论中提到的性能警告。
如果你的Dataframe中的所有数据都有相同的dtype,你可以使用NumPy数组。您可以直接将行写入预定义数组,并在最后将其转换为数据框架。 它似乎比转换字典列表还要快。
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)
你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。
例如:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
如果你总是想在最后添加一个新行,使用这个:
df.loc[len(df)] = ['name5', 9, 0]
从python的角度来说:
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())
lib qty1 qty2
0 NaN 10.0 NaN