我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
我们经常看到结构df。loc[下标]=…分配给一个数据帧行。Mikhail_Sam发布了包含这个构造以及使用dict并最终创建DataFrame的方法的基准测试。他发现后者是目前为止最快的。
但是如果我们替换df3。loc[i] =…(与预分配的DataFrame)在他的代码df3。值[i] =…时,结果会发生显著变化,因为该方法的执行与使用dict的方法类似。所以我们应该经常使用df。考虑[下标]=…但是请注意,.values有一个从零开始的下标,这可能与DataFrame.index不同。
其他回答
如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:
创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。
我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
如果你的Dataframe中的所有数据都有相同的dtype,你可以使用NumPy数组。您可以直接将行写入预定义数组,并在最后将其转换为数据框架。 它似乎比转换字典列表还要快。
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)
你可以用df。Loc [i],其中索引为i的行将是你在数据框架中指定的行。
>>> import pandas as pd
>>> from numpy.random import randint
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>> df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
>>> df
lib qty1 qty2
0 name0 3 3
1 name1 2 4
2 name2 2 8
3 name3 2 1
4 name4 9 6
您可以使用生成器对象来创建一个Dataframe,这将在列表中更有效地使用内存。
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
要向现有的数据帧添加raw,可以使用append方法。
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])
在添加一行之前,我们必须将数据帧转换为字典。在这里,你可以看到键作为数据帧中的列,列的值再次存储在字典中,但是每个列的键都是数据帧中的索引号。
这个想法促使我编写下面的代码。
df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns: # Here df.columns gives us the main dictionary key
df2[x][101] = values[i] # Here the 101 is our index number. It is also the key of the sub dictionary
i += 1