我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

在添加一行之前,我们必须将数据帧转换为字典。在这里,你可以看到键作为数据帧中的列,列的值再次存储在字典中,但是每个列的键都是数据帧中的索引号。

这个想法促使我编写下面的代码。

df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns:   # Here df.columns gives us the main dictionary key
    df2[x][101] = values[i]   # Here the 101 is our index number. It is also the key of the sub dictionary
    i += 1

其他回答

initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}

df = pd.DataFrame(initial_data)

df

lib    qty1    qty2
0    1    1    1
1    2    2    2
2    3    3    3
3    4    4    4

val_1 = [10]
val_2 = [14]
val_3 = [20]

df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))

lib    qty1    qty2
0    1    1    1
1    2    2    2
2    3    3    3
3    4    4    4
0    10    14    20

可以使用for循环遍历值,也可以添加值数组。

val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]

df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))

lib    qty1    qty2
0    1    1    1
1    2    2    2
2    3    3    3
3    4    4    4
0    10    14    20
1    11    15    21
2    12    16    22
3    13    17    43

我们经常看到结构df。loc[下标]=…分配给一个数据帧行。Mikhail_Sam发布了包含这个构造以及使用dict并最终创建DataFrame的方法的基准测试。他发现后者是目前为止最快的。

但是如果我们替换df3。loc[i] =…(与预分配的DataFrame)在他的代码df3。值[i] =…时,结果会发生显著变化,因为该方法的执行与使用dict的方法类似。所以我们应该经常使用df。考虑[下标]=…但是请注意,.values有一个从零开始的下标,这可能与DataFrame.index不同。

如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:

创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。

我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。

rows_list = []
for row in input_rows:

        dict1 = {}
        # get input row in dictionary format
        # key = col_name
        dict1.update(blah..) 

        rows_list.append(dict1)

df = pd.DataFrame(rows_list)               

如果你的Dataframe中的所有数据都有相同的dtype,你可以使用NumPy数组。您可以直接将行写入预定义数组,并在最后将其转换为数据框架。 它似乎比转换字典列表还要快。

import pandas as pd
import numpy as np
from string import ascii_uppercase

startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
    npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)

如果你有一个数据帧df,想要添加一个列表new_list作为一个新行到df,你可以简单地做:

df.loc[len(df)] = new_list

如果你想在数据帧df下添加一个新的数据帧new_df,那么你可以使用:

df.append(new_df)