我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

您可以使用生成器对象来创建一个Dataframe,这将在列表中更有效地使用内存。

num = 10

# Generator function to generate generator object
def numgen_func(num):
    for i in range(num):
        yield ('name_{}'.format(i), (i*i), (i*i*i))

# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )

df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))

要向现有的数据帧添加raw,可以使用append方法。

df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400  }])

其他回答

如果你总是想在最后添加一个新行,使用这个:

df.loc[len(df)] = ['name5', 9, 0]

与ShikharDua的答案(基于行)中的字典列表不同,我们也可以将我们的表表示为一个列表字典(基于列),其中每个列表按行顺序存储一列,前提是我们事先知道我们的列。最后,我们构造一次DataFrame。

在这两种情况下,字典键始终是列名。行顺序隐式存储为列表中的order。对于c列和n行,它使用一个c个字典列表,而不是一个n个字典列表。字典列表方法让每个字典冗余地存储所有键,并且需要为每一行创建一个新字典。这里我们只追加到列表中,这总体上是相同的时间复杂度(向列表和字典中添加条目都是平摊常数时间),但由于操作简单,开销可能更小。

# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}

# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")

# At the end, construct our DataFrame
df = pd.DataFrame(data)
#   Animal  Color
# 0    cow   blue
# 1  horse    red
# 2  mouse  black

可以使用ignore_index选项将单行追加为字典。

>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
  Animal Color
0    cow  blue
1  horse   red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
  Animal  Color
0    cow   blue
1  horse    red
2  mouse  black

如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:

创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。

我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。

rows_list = []
for row in input_rows:

        dict1 = {}
        # get input row in dictionary format
        # key = col_name
        dict1.update(blah..) 

        rows_list.append(dict1)

df = pd.DataFrame(rows_list)               

如果你的Dataframe中的所有数据都有相同的dtype,你可以使用NumPy数组。您可以直接将行写入预定义数组,并在最后将其转换为数据框架。 它似乎比转换字典列表还要快。

import pandas as pd
import numpy as np
from string import ascii_uppercase

startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
    npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)